[1]

Hassan ZM, Sebola NA, Mabelebele M. 2020. Evaluating the physical and chemical contents of millets obtained from South Africa and Zimbabwe. CyTA - Journal of Food 18:662−69

doi: 10.1080/19476337.2020.1818831
[2]

Hossain MS, Islam MN, Rahman MM, Mostofa MG, Khan MAR. 2022. Sorghum: a prospective crop for climatic vulnerability, food and nutritional security. Journal of Agriculture and Food Research 8:100300

doi: 10.1016/j.jafr.2022.100300
[3]

Sirany T, Tadele E, Aregahegn H, Wale D. 2022. Economic potentials and use dynamics of Sorghum food system in Ethiopia: its implications to resolve food deficit. Advances in Agriculture 2022:4580643

doi: 10.1155/2022/4580643
[4]

Mukarumbwa P, Mushunje A. 2010. Potential of sorghum and finger millet to enhance household food security in Zimbabwe's semi-arid regions: a review. The Joint 3 rd African Association of Agricultural Economists (AAAE) and 48 th Agricultural Economists Association of South Africa (AEASA) Conference, Cape Town, South Africa, 19−23 September 2010. USA: AgEcon Search. doi: 10.22004/ag.econ.96430

[5]

Pereira LM, Hawkes C. 2022. Leveraging the potential of Sorghum as a healthy food and resilient crop in the South African food system. Frontiers in Sustainable Food Systems 6:786151

doi: 10.3389/fsufs.2022.786151
[6]

Li H, Wang P, Huang C. 2022. Comparison of deep learning methods for detecting and counting Sorghum heads in UAV imagery. Remote Sensing 14:3143

doi: 10.3390/rs14133143
[7]

Raschke V, Oltersdorf U, Elmadfa I, Wahlqvist M, Kouris-Blazos A, et al. 2007. The need for an online collection of traditional African food habits. African Journal of Food, Agriculture, Nutrition and Development 7:1−22

[8]

Revoredo-Giha C, Toma L, Akaichi F, Dawson I. 2022. Exploring the effects of increasing underutilized crops on consumers' diets: the case of millet in Uganda. Agricultural and Food Economics 10:1

doi: 10.1186/s40100-021-00206-3
[9]

Dunjana N, Dube E, Chauke P, Motsepe M, Madikiza S, et al. 2022. Sorghum as a household food and livelihood security crop under climate change in South Africa: a review. South African Journal of Science 118:13340

doi: 10.17159/sajs.2022/13340
[10]

Grovermann C, Umesh KB, Quiédeville S, Kumar BG, Srinivasaiah S, et al. 2018. The economic reality of underutilised crops for climate resilience, food security and nutrition: assessing finger millet productivity in India. Agriculture 8:131

doi: 10.3390/agriculture8090131
[11]

Sharma A, Georgi M, Tregubenko M, Tselykh A, Tselykh A. 2022. Enabling smart agriculture by implementing artificial intelligence and embedded sensing. Computers & Industrial Engineering 165:107936

doi: 10.1016/j.cie.2022.107936
[12]

Chergui N. 2022. Durum wheat yield forecasting using machine learning. Artificial Intelligence in Agriculture 6:156−66

doi: 10.1016/j.aiia.2022.09.003
[13]

Ramu M, Sri JT. 2021. Wheat yield prediction using Artificial Intelligence models and its comparative analysis for better prediction. 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), March 4−5, 2021, Greater Noida, India. USA: IEEE. pp. 363−67. doi: 10.1109/ICACITE51222.2021.9404707

[14]

Patrício DI, Rieder R. 2018. Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review. Computers and Electronics in Agriculture 153:69−81

doi: 10.1016/j.compag.2018.08.001
[15]

Pantazi XE, Moshou D, Mouazen AM, Kuang B, Alexandridis T. 2014. Application of supervised self organising models for wheat yield prediction. In Artificial Intelligence Applications and Innovations, eds. Iliadis L, Maglogiannis I, Papadopoulos H. Berlin, Heidelberg: Springer. pp. 556−65. doi: 10.1007/978-3-662-44654-6_55

[16]

Patil J, Kurankar R, Mahajan S, Kaley A, Hoskote H. 2020. Crop prediction and disease detection using machine learning. Paideuma Journal 10:139-44

[17]

Sibiya M, Sumbwanyambe M. 2021. Automatic fuzzy logic-based maize common rust disease severity predictions with thresholding and deep learning. Pathogens 10:131

doi: 10.3390/pathogens10020131
[18]

González Perea R, Camacho Poyato E, Montesinos P, Rodríguez Díaz JA. 2018. Prediction of applied irrigation depths at farm level using artificial intelligence techniques. Agricultural Water Management 206:229−40

doi: 10.1016/j.agwat.2018.05.019
[19]

Arora J, Agrawal U, Sharma P. 2020. Classification of Maize leaf diseases from healthy leaves using Deep Forest. Journal of Artificial Intelligence and Systems 2:14−26

doi: 10.33969/ais.2020.21002
[20]

Liu LW, Lu CT, Wang YM, Lin KH, Ma X, et al. 2022. Rice (Oryza sativa L. ) growth modeling based on growth degree day (GDD) and artificial intelligence algorithms. Agriculture 12:59

doi: 10.3390/agriculture12010059
[21]

Liundi N, Darma AW, Gunarso R, Warnars HLHS. 2019. Improving rice productivity in Indonesia with artificial intelligence. 2019 7 th International Conference on Cyber and IT Service Management (CITSM), November 6-8, 2019, Jakarta, Indonesia. USA: IEEE. pp. 1−5. doi: 10.1109/citsm47753.2019.8965385

[22]

Chen WL, Lin YB, Ng FL, Liu CY, Lin YW. 2020. RiceTalk: rice blast detection using Internet of Things and artificial intelligence technologies. IEEE Internet of Things Journal 7:1001−10

doi: 10.1109/JIOT.2019.2947624
[23]

ur Rahman H, Ch NJ, Manzoor S, Najeeb F, Siddique MY, et al. 2017. A comparative analysis of machine learning approaches for plant disease identification. Advancements in life sciences 4(4):120−26

[24]

Coulibaly S, Kamsu-Foguem B, Kamissoko D, Traore D. 2019. Deep neural networks with transfer learning in millet crop images. Computers in Industry 108:115−20

doi: 10.1016/j.compind.2019.02.003
[25]

Tadmare SS, Mahalakshmi B. 2022. A Survey on Sorghum Leaf Disease Detection and Classification Using Convolutional Neural Networks. International Journal of Scientific Research in Computer Science Applications and Management Studies

[26]

Garcia E, Gonzalez F, Hamilton G, Grundy P. 2015. Assessment of crop insect damage using unmanned aerial systems: a machine learning approach. 21 st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 2015. Modelling and Simulation Society of Australia and New Zealand Inc. (MSSANZ). pp. 1420−26. doi: 10.36334/modsim.2015.f12.puig

[27]

Roseline P, Tauro CJM, Ganesan N. 2012. Design and development of fuzzy expert system for integrated disease management in finger millets. International Journal of Computer Applications 56:31−36

doi: 10.5120/8857-2815
[28]

Genze N, Ajekwe R, Güreli Z, Haselbeck F, Grieb M, et al. 2022. Deep learning-based early weed segmentation using motion blurred UAV images of Sorghum fields. Computers and Electronics in Agriculture 202:107388

doi: 10.1016/j.compag.2022.107388
[29]

Ullah A, Salehnia N, Kolsoumi S, Ahmad A, Khaliq T. 2018. Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through Genetic Algorithm in Punjab, Pakistan. Ecological Indicators 90:569−76

doi: 10.1016/j.ecolind.2018.03.053
[30]

Al-Adhaileh MH, Aldhyani THH. 2022. Artificial intelligence framework for modeling and predicting crop yield to enhance food security in Saudi Arabia. PeerJ Computer Science 8:e1104

doi: 10.7717/peerj-cs.1104
[31]

Chung YS, Choi SC, Silva RR, Kang JW, Eom JH, et al. 2017. Case study: Estimation of Sorghum biomass using digital image analysis with Canopeo. Biomass and Bioenergy 105:207−10

doi: 10.1016/j.biombioe.2017.06.027
[32]

Gonzalo-Martín C, García-Pedrero A, Lillo-Saavedra M. 2021. Improving deep learning Sorghum head detection through test time augmentation. Computers and Electronics in Agriculture 186:106179

doi: 10.1016/j.compag.2021.106179
[33]

Huntington T, Cui X, Mishra U, Scown CD. 2020. Machine learning to predict biomass Sorghum yields under future climate scenarios. Biofuels, Bioproducts and Biorefining 14:566−77

doi: 10.1002/bbb.2087
[34]

Mosley L, Pham H, Bansal Y, Hare E. 2020. Image-based Sorghum head counting when you only look once. arXiv Preprint

doi: 10.48550/arXiv.2009.11929
[35]

Gai J, Xiang L, Tang L. 2021. Using a depth camera for crop row detection and mapping for under-canopy navigation of agricultural robotic vehicle. Computers and Electronics in Agriculture 188:106301

doi: 10.1016/j.compag.2021.106301
[36]

Chinnasamy K, Arumugam Y, Jegadeesan R, Chockalingam V. 2021. Linear discriminant analysis in red Sorghum using artificial intelligence. The Nucleus 64:103−13

doi: 10.1007/s13237-020-00340-1
[37]

Kosmowski F, Worku T. 2018. Evaluation of a miniaturized NIR spectrometer for cultivar identification: the case of barley, chickpea and Sorghum in Ethiopia. PLoS One 13:e0193620

doi: 10.1371/journal.pone.0193620
[38]

Kundu N, Rani G, Dhaka VS. 2021. Seeds classification and quality testing using deep learning and YOLOv5. Proceedings of the International Conference on Data Science, Machine Learning and Artificial Intelligence, Windhoek, Namibia, 9−12 August 2021. New York, USA: ACM. pp. 153−60. doi: 10.1145/3484824.3484913

[39]

Miao C, Guo A, Thompson AM, Yang J, Ge Y, et al. 2021. Automation of leaf counting in maize and Sorghum using deep learning. The Plant Phenome Journal 4:e20022

doi: 10.1002/ppj2.20022
[40]

Kaliba AR, Mushi RJ, Gongwe AG, Mazvimavi K. 2020. A typology of adopters and nonadopters of improved Sorghum seeds in Tanzania: a deep learning neural network approach. World Development 127:104839

doi: 10.1016/j.worlddev.2019.104839
[41]

Ropelewska E, Nazari L. 2021. The effect of drought stress of Sorghum grains on the textural features evaluated using machine learning. European Food Research and Technology 247(11):2787−98

doi: 10.1007/s00217-021-03832-9
[42]

Senagi K, Jouandeau N, Kamoni P. 2017. Using parallel random forest classifier in predicting land suitability for crop production. Journal of Agricultural Informatics 8(3):23−32

doi: 10.17700/jai.2017.8.3.390
[43]

Kahsay A, Haile M, Gebresamuel G, Mohammed, et al. 2018. Land suitability analysis for Sorghum crop production in northern semi-arid Ethiopia: Application of GIS-based fuzzy AHP approach. Cogent Food & Agriculture 4:1507184

doi: 10.1080/23311932.2018.1507184
[44]

Elaalem M. 2012. Land suitability evaluation for Sorghum based on Boolean and fuzzy-multi-criteria decision analysis methods. International Journal of Environmental Science and Development 3(4):357−61

doi: 10.7763/ijesd.2012.v3.247
[45]

Armah FA, Odoi JO, Yengoh GT, Obiri S, Yawson DO, et al. 2011. Food security and climate change in drought-sensitive savanna zones of Ghana. Mitigation and Adaptation Strategies for Global Change 16:291−306

doi: 10.1007/s11027-010-9263-9
[46]

Paliwal J, Joshi S. 2022. An overview of deep learning models for foliar disease detection in maize crop. Journal of Artificial Intelligence and Systems 4:1−21

doi: 10.33969/ais.2022040101
[47]

Liu Q, Yang M, Mohammadi K, Song D, Bi J, et al. 2022. Machine learning crop yield models based on meteorological features and comparison with a process-based model. Artificial Intelligence for the Earth Systems 1(4):e220002

doi: 10.1175/aies-d-22-0002.1
[48]

Jayagopal P, Muthukumaran V, Koti MS, Kumar SS, Rajendran S, et al. 2022. Weather-based maize yield forecast in Saudi Arabia using statistical analysis and machine learning. Acta Geophysica 70(6):2901−16

doi: 10.1007/s11600-022-00854-z
[49]

Adisa OM. 2019. The use of satellite-derived data and neural-network analysis to examine variation in maize yield under changing climate. Doctoral dissertation. University of Pretoria, South Africa

[50]

Crane-Droesch A. 2018. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters 13(11):114003

doi: 10.1088/1748-9326/aae159
[51]

Dönmez E. 2022. Enhancing classification capacity of CNN models with deep feature selection and fusion: a case study on maize seed classification. Data & Knowledge Engineering 141:102075

doi: 10.1016/j.datak.2022.102075
[52]

Xu P, Tan Q, Zhang Y, Zha X, Yang S, et al. 2022. Research on maize seed classification and recognition based on machine vision and deep learning. Agriculture 12(2):232

doi: 10.3390/agriculture12020232
[53]

Zhou Q, Huang W, Tian X, Yang Y, Liang D. 2021. Identification of the variety of maize seeds based on hyperspectral images coupled with convolutional neural networks and subregional voting. Journal of the Science of Food and Agriculture 101(11):4532−42

doi: 10.1002/jsfa.11095
[54]

Guo H, Zhou X, Dong Y, Wang Y, Li S. 2023. On the use of machine learning methods to improve the estimation of gross primary productivity of maize field with drip irrigation. Ecological Modelling 476:110250

doi: 10.1016/j.ecolmodel.2022.110250
[55]

Baio FHR, Santana DC, Teodoro LPR, de Oliveira IC, Gava R, et al. 2023. Maize yield prediction with machine learning, spectral variables and irrigation management. Remote Sensing 15:79

doi: 10.3390/rs15010079
[56]

Saravi B, Nejadhashemi AP, Tang B. 2020. Quantitative model of irrigation effect on maize yield by deep neural network. Neural Computing and Applications 32:10679−92

doi: 10.1007/s00521-019-04601-2