[1]

Petrescu DC, Vermeir I, Petrescu-Mag RM. 2020. Consumer understanding of food quality, healthiness, and environmental impact: A cross-national perspective. International Journal of Environmental Research and Public Health 17:169

doi: 10.3390/ijerph17010169
[2]

Tian S, Xu H. 2022. Nondestructive methods for the quality assessment of fruits and vegetables considering their physical and biological variability. Food Engineering Reviews 14:380−407

doi: 10.1007/s12393-021-09300-0
[3]

Kong F, Singh R. 2016. The Stability and Shelf Life of FoodChemical deterioration and physical instability of foods and beverages. In The Stability and Shelf Life of Food, ed. Subramaniam P. 2nd Edition. Sawston, United Kingdom: Woodhead Publishing. pp. 43−76 pp. doi: 10.1016/b978-0-08-100435-7.00002-2

[4]

Su WH, He HJ, Sun DW. 2017. Non-destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review. Critical Reviews in Food Science and Nutrition 57:1039−51

doi: 10.1080/10408398.2015.1082966
[5]

Narendra VG, Hareesh KS. 2010. Prospects of computer vision automated grading and sorting systems in agricultural and food products for quality evaluation. International Journal of Computer Applications 1(4):1−9

doi: 10.5120/111-226
[6]

Anderson AK. 2008. Biogenic and volatile amine-related qualities of three popular fish species sold at Kuwait fish markets. Food Chemistry 107:761−67

doi: 10.1016/j.foodchem.2007.08.094
[7]

Oraguzie N, Alspach P, Volz R, Whitworth C, Ranatunga C, et al. 2009. Postharvest assessment of fruit quality parameters in apple using both instruments and an expert panel. Postharvest Biology and Technology 52:279−87

doi: 10.1016/j.postharvbio.2009.01.004
[8]

Magwaza LS, Tesfay SZ. 2015. A review of destructive and non-destructive methods for determining avocado fruit maturity. Food and Bioprocess Technology 8:1995−2011

doi: 10.1007/s11947-015-1568-y
[9]

Singh CB, Jayas DS. 2013. Optical sensors and online spectroscopy for automated quality and safety inspection of food products. In Robotics and Automation in the Food Industry. UK: Woodhead Publishing. pp. 111−29. doi: 10.1533/9780857095763.1.111

[10]

Magnus I, Virte M, Thienpont H, Smeesters L. 2021. Combining optical spectroscopy and machine learning to improve food classification. Food Control 130:108342

doi: 10.1016/j.foodcont.2021.108342
[11]

Goyache F, Bahamonde A, Alonso J, Lopez S, del Coz JJ, et al. 2001. The usefulness of artificial intelligence techniques to assess subjective quality of products in the food industry. Trends in Food Science & Technology 12:370−81

doi: 10.1016/S0924-2244(02)00010-9
[12]

Tunny SS, Kurniawan H, Amanah HZ, Baek I, Kim MS, et al. 2023. Hyperspectral imaging techniques for detection of foreign materials from fresh-cut vegetables. Postharvest Biology and Technology 201:112373

doi: 10.1016/j.postharvbio.2023.112373
[13]

Tian H, Wang T, Liu Y, Qiao X, Li Y. 2020. Computer vision technology in agricultural automation—a review. Information Processing in Agriculture 7:1−19

doi: 10.1016/j.inpa.2019.09.006
[14]

Tapia-Mendez E, Cruz-Albarran IA, Tovar-Arriaga S, Morales-Hernandez LA. 2023. Deep learning-based method for classification and ripeness assessment of fruits and vegetables. Applied Sciences 13:12504

doi: 10.3390/app132212504
[15]

Hussein Z, Fawole OA, Opara UL. 2020. Harvest and postharvest factors affecting bruise damage of fresh fruits. Horticultural Plant Journal 6:1−13

doi: 10.1016/j.hpj.2019.07.006
[16]

Umapathi R, Park B, Sonwal S, Rani GM, Cho Y, et al. 2022. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends in Food Science & Technology 119:69−89

doi: 10.1016/j.jpgs.2021.11.018
[17]

Ran W, Chen Y. 2023. Fresh produce supply chain coordination based on freshness preservation strategy. Sustainability 15:8184

doi: 10.3390/su15108184
[18]

He M, Li C, Cai Z, Qi H, Zhou L, et al. 2024. Leafy vegetable freshness identification using hyperspectral imaging with deep learning approaches. Infrared Physics & Technology 138:105216

doi: 10.1016/j.infrared.2024.105216
[19]

Guo Z, Zhang Y, Wang J, Liu Y, Jayan H, et al. 2023. Detection model transfer of apple soluble solids content based on NIR spectroscopy and deep learning. Computers and Electronics in Agriculture 212:108127

doi: 10.1016/j.compag.2023.108127
[20]

Mohammed M, Srinivasagan R, Alzahrani A, Alqahtani NK. 2023. Machine-learning-based spectroscopic technique for non-destructive estimation of shelf life and quality of fresh fruits packaged under modified atmospheres. Sustainability 15:12871

doi: 10.3390/su151712871
[21]

Aboah J, Lees N. 2020. Consumers use of quality cues for meat purchase: Research trends and future pathways. Meat Science 166:108142

doi: 10.1016/j.meatsci.2020.108142
[22]

Hassoun A, Karoui R. 2017. Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations. Critical Reviews in Food Science and Nutrition 57:1976−98

doi: 10.1080/10408398.2015.1047926
[23]

Font-I-Furnols M, Čandek-Potokar M, Maltin C, Prevolnik Povše M. 2015. A handbook of reference methods for meat quality assessment. Brussels, Belgium: European Cooperation in Science and Technology (COST).

[24]

Honikel KO. 1991. Assessment of meat quality. In Animal biotechnology and the quality of meat production, eds. Fiems LO, Cottyn BG, Demeyer DI. Amsterdam: Elsevier. pp. 107−25. doi: 10.1016/b978-0-444-88930-0.50013-4

[25]

Warner R. 2014. Measurement of meat quality. Measurements of water-holding capacity and color: objective and subjective. In Encyclopedia of Meat Sciences, eds. Dikeman M, Devine C. 2nd Edition. UK: Academic Press. pp. 164−71. doi: 10.1016/b978-0-12-384731-7.00210-5

[26]

Damez JL, Clerjon S. 2008. Meat quality assessment using biophysical methods related to meat structure. Meat Science 80:132−49

doi: 10.1016/j.meatsci.2008.05.039
[27]

Chen Q, Xie Y, Yu H, Guo Y, Yao W. 2023. Non-destructive prediction of colour and water-related properties of frozen/thawed beef meat by Raman spectroscopy coupled multivariate calibration. Food Chemistry 413:135513

doi: 10.1016/j.foodchem.2023.135513
[28]

Meenu M, Kurade C, Neelapu BC, Kalra S, Ramaswamy HS, et al. 2021. A concise review on food quality assessment using digital image processing. Trends in Food Science & Technology 118:106−24

doi: 10.1016/j.jpgs.2021.09.014
[29]

Cai J, Lu Y, Olaniyi E, Wang S, Dahlgren C, et al. 2024. Beef marbling assessment by structured-illumination reflectance imaging with deep learning. Journal of Food Engineering 369:111936

doi: 10.1016/j.jfoodeng.2024.111936
[30]

Lu Y, Lu R. 2019. Structured-illumination reflectance imaging for the detection of defects in fruit: Analysis of resolution, contrast and depth-resolving features. Biosystems Engineering 180:1−15

doi: 10.1016/j.biosystemseng.2019.01.014
[31]

Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. 2018. Unet++: a nested u-net architecture for medical image segmentation. Proc. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4 th International Workshop, DLMIA 2018, and 8 th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018. Cham: Springer. pp. 3Cham11. doi: 10.1007/978-3-030-00889-5_1

[32]

Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. Proc. Proceedings of the European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, 2018.Cham: Springer. pp. 801−18. doi: 10.1007/978-3-030-00889-5_1

[33]

Xie E, Wang W, Yu Z, Anandkumar A, Alvarez JM, et al. 2021. SegFormer: Simple and efficient design for semantic segmentation with transformers. Advances in Neural Information Processing Systems 34:12077−90

[34]

Cheng JH, Sun DW, Pu H, Zhu Z. 2015. Development of hyperspectral imaging coupled with chemometric analysis to monitor K value for evaluation of chemical spoilage in fish fillets. Food Chemistry 185:245−53

doi: 10.1016/j.foodchem.2015.03.111
[35]

Jinadasa B. 2014. Determination of quality of marine fishes based on total volatile base nitrogen test (TVB-N). Nature and Science 12(5):106−11

[36]

Wang K, Yue Z, Lin H, Wang Q, Wang L, et al. 2023. Rapid classification of the freshness grades of sea bass (Lateolabrax japonicus) fillets using a portable Raman spectrometer with machine learning method. Microchemical Journal 192:108948

doi: 10.1016/j.microc.2023.108948
[37]

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. 2017 IEEE International Conference on Computer Vision (ICCV), 22-29 October 2017, Venice, Italy. pp. 618-26. doi: 10.1109/ICCV.2017.74

[38]

Yildiz MB, Yasin ET, Koklu M. 2024. Fisheye freshness detection using common deep learning algorithms and machine learning methods with a developed mobile application. European Food Research and Technology 250:1919−32

doi: 10.1007/s00217-024-04493-0
[39]

Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, et al. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size. arXiv Preprint

doi: 10.48550/arXiv.1602.07360
[40]

Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv Preprint

doi: 10.48550/arXiv.1409.1556
[41]

Nayik GA, Muzaffar K, Gull A. 2015. Robotics and food technology: a mini review. Journal of Nutrition & Food Sciences 5:4

doi: 10.4172/2155-9600.1000384
[42]

Tituaña L, Gholami A, He Z, Xu Y, Karkee M, et al. 2024. A small autonomous field robot for strawberry harvesting. Smart Agricultural Technology 8:100454

doi: 10.1016/j.atech.2024.100454
[43]

Diwan T, Anirudh G, Tembhurne JV. 2023. Object detection using YOLO: Challenges, architectural successors, datasets and applications. Multimedia Tools and Applications 82:9243−75

doi: 10.1007/s11042-022-13644-y
[44]

Zhang K, Lammers K, Chu P, Li Z, Lu R. 2024. An automated apple harvesting robot—from system design to field evaluation. Journal of Field Robotics 41:2384−400

doi: 10.1002/rob.22268
[45]

Lu Z, Zhao M, Luo J, Wang G, Wang D. 2021. Design of a winter-jujube grading robot based on machine vision. Computers and Electronics in Agriculture 186:106170

doi: 10.1016/j.compag.2021.106170
[46]

Aly BA, Low T, Long D, Brett P, Baillie C. 2024. Tactile sensing for tissue discrimination in robotic meat cutting: a feasibility study. Journal of Food Engineering 363:111754

doi: 10.1016/j.jfoodeng.2023.111754
[47]

Manko M, Smolkin O, Romanov D, de Medeiros Esper I, Popov A, et al. 2024. Deep learning model for automatic limb detection and gripping in a novel meat factory cell. Smart Agricultural Technology 8:100486

doi: 10.1016/j.atech.2024.100486
[48]

de Medeiros Esper I, Gangsei LE, Cordova-Lopez LE, Romanov D, Bjørnstad PH, et al. 2024. 3D model based adaptive cutting system for the meat factory cell: overcoming natural variability. Smart Agricultural Technology 7:100388

doi: 10.1016/j.atech.2023.100388
[49]

Raheem D, Treiblmaier H, Mohammed WM, Ferrer BR, Martinez-Lastra JL. 2024. Robotics as key enabler technology in Food Industry 4.0 and beyond. In Food Industry 4.0, ed. Hassoun A. UK: Academic Press. pp. 121−31. doi: 10.1016/b978-0-443-15516-1.00007-4

[50]

Wright R, Parekh S, White R, Losey DP. 2024. Safely and autonomously cutting meat with a collaborative robot arm. Scientific Reports 14:299

doi: 10.1038/s41598-023-50569-4
[51]

Yang L, Shami A. 2020. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415:295−316

doi: 10.1016/j.neucom.2020.07.061