[1] |
Im J, Löffler FE. 2016. Fate of bisphenol A in terrestrial and aquatic environments. Environmental Science & Technology 50:8403−16 doi: 10.1021/acs.est.6b00877 |
[2] |
Michałowicz J. 2014. Bisphenol A – sources, toxicity and biotransformation. Environmental Toxicology and Pharmacology 37:738−58 doi: 10.1016/j.etap.2014.02.003 |
[3] |
Bhatnagar A, Anastopoulos I. 2017. Adsorptive removal of bisphenol A (BPA) from aqueous solution: a review. Chemosphere 168:885−902 doi: 10.1016/j.chemosphere.2016.10.121 |
[4] |
Xiao Z, Wang R, Suo D, Li T, Su X. 2020. Trace analysis of bisphenol A and its analogues in eggs by ultra-performance liquid chromatography-tandem mass spectrometry. Food Chemistry 327:12688 doi: 10.1016/j.foodchem.2020.126882 |
[5] |
Zeng N, Wang X, Dong Y, Yang Y, Yin Y, et al. 2023. Aptasensor based on screen-printed carbon electrodes modified with CS/AuNPs for sensitive detection of okadaic acid in shellfish. Journal of Analysis and Testing 7:128−35 doi: 10.1007/s41664-022-00245-9 |
[6] |
Yang Y, Zhang X, Wang X, Jing X, Yu L, et al. 2024. Self-powered molecularly imprinted photoelectrochemical sensor based on Ppy/QD/HOF heterojunction for the detection of bisphenol A. Food Chemistry 443:138499 doi: 10.1016/j.foodchem.2024.138499 |
[7] |
Lim HJ, Lee EH, Lee SD, Yoon Y, Son A. 2018. Quantitative screening for endocrine-disrupting bisphenol A in consumer and household products using NanoAptamer assay. Chemosphere 211:72−80 doi: 10.1016/j.chemosphere.2018.07.125 |
[8] |
Hwang E, Lee B. 2022. Synthesis of a fluorescence sensor based on carbon quantum dots for detection of bisphenol A in aqueous solution. Korean Journal of Chemical Engineering 39:1324−32 doi: 10.1007/s11814-021-0989-8 |
[9] |
Kadam VV, Balakrishnan RM, Ettiyappan JP. 2021. Fluorometric detection of bisphenol A using β-cyclodextrin-functionalized ZnO QDs. Environmental Science and Pollution Research 28:11882−92 doi: 10.1007/s11356-020-07797-2 |
[10] |
Wang YQ, Chen TT, Zhang HM. 2010. Investigation of the interactions of lysozyme and trypsin with biphenol A using spectroscopic methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 75:1130−37 doi: 10.1016/j.saa.2009.12.071 |
[11] |
Liu SG, Wu T, Liang Z, Zhao Q, Gao W, et al. 2023. A fluorescent method for bisphenol A detection based on enzymatic oxidation-mediated emission quenching of silicon nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 302:123123 doi: 10.1016/j.saa.2023.123123 |
[12] |
Pan Y, Wu M, Shi M, Shi P, Zhao N, et al. 2023. An Overview to Molecularly Imprinted Electrochemical Sensors for the Detection of Bisphenol A. Sensors 23:8656 doi: 10.3390/s23208656 |
[13] |
Tan F, Cong L, Li X, Zhao Q, Zhao H, et al. 2016. An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples. Sensors and Actuators B: Chemical 233:599−606 doi: 10.1016/j.snb.2016.04.146 |
[14] |
Piao MH, Noh HB, Rahman MA, Won MS, Shim YB. 2008. Label-free detection of bisphenol A using a potentiometric immunosensor. Electroanalysis 20:30−37 doi: 10.1002/elan.200704022 |
[15] |
Palchetti I, Mascini M. 2012. Electrochemical nanomaterial-based nucleic acid aptasensors. Analytical And Bioanalytical Chemistry 402:3103−14 doi: 10.1007/s00216-012-5769-1 |
[16] |
Liu W, Li M, Zhang P, Jiang H, Liu W, et al. 2024. One-step growth of Cu-doped carbon dots in amino-modified carbon nanotube-modified electrodes for sensitive electrochemical detection of BPA. Microchimica Acta 191:309 doi: 10.1007/s00604-024-06344-x |
[17] |
Hui Y, Webster RD. 2011. Absorption of water into organic solvents used for electrochemistry under conventional operating conditions. Analytical Chemistry 83:976−81 doi: 10.1021/ac102734a |
[18] |
Jesuraj R, Amalraj A, Vaidyanathan VK, Perumal P. 2023. Exceptional peroxidase-like activity of an iron and copper based organic framework nanosheet for consecutive colorimetric biosensing of glucose and kanamycin in real food samples. Analyst 148:5157−71 doi: 10.1039/d3an01242e |
[19] |
Rao H, Xue X, Luo M, Liu H, Xue Z. 2021. Recent advances in the development of colorimetric analysis and testing based on aggregation-induced nanozymes. Chinese Chemical Letters 32:25−32 doi: 10.1016/j.cclet.2020.09.017 |
[20] |
Tang D, Shi J, Wu Y, Luo H, Yan J, et al. 2023. Flexible self-powered sensing system based on novel DNA circuit strategy and graphdiyne for thalassemia gene by rapid naked-eye tracking and open-circuit voltage. Analytical Chemistry 95:16374−82 doi: 10.1021/acs.analchem.3c03841 |
[21] |
Song Y, Wang Z, Wu Q, Su J, Liao J, et al. 2025. A dual-mode strategy for early detection of sugarcane pokkah boeng disease pathogen: a portable sensing device based on Cross-N DNA framework and MoS2@GDY. Biosensors & Bioelectronics 267:116874 doi: 10.1016/j.bios.2024.116874 |
[22] |
Shi J, Li P, Huang Y, Wu Y, Wu J, et al. 2024. Smartphone-assisted self-powered dual-mode biosensor designed on binary 3D DNA Walkers mediated CRISPR/Cas12a system. Chemical Engineering Journal 483:149231 doi: 10.1016/j.cej.2024.149231 |
[23] |
Bayram A, Horzum N, Metin AU, Kılıç V, Solmaz ME. 2018. Colorimetric bisphenol-A detection with a portable smartphone-based spectrometer. IEEE Sensors Journal 18:5948−55 doi: 10.1109/JSEN.2018.2843794 |
[24] |
Ren S, Cho S, Lin RX, Gedi V, Park S, et al. 2022. Nonbiodegradable spiegelmer-driven colorimetric biosensor for bisphenol A detection. Biosensors 12:864 doi: 10.3390/bios12100864 |
[25] |
Xu J, Li Y, Bie J, Jiang W, Guo J, et al. 2015. Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchimica Acta 182:2131−38 doi: 10.1007/s00604-015-1547-z |
[26] |
Lee EH, Lee SK, Kim MJ, Lee SW. 2019. Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor. Food Chemistry 287:205−13 doi: 10.1016/j.foodchem.2019.02.079 |
[27] |
Huang A, Xia L, Chen J, Wu S, Tang Y, et al. 2024. A dual-mode colorimetric and fluorometric sensor for the detection of spermine and spermidine in food based on N-doped carbon dots and peroxidase-like activity of V6O13 nanobelts. Sensors and Actuators B: Chemical 409:135596 doi: 10.1016/j.snb.2024.135596 |
[28] |
Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, et al. 2010. Laccase: a never-ending story. Cellular and Molecular Life Sciences 67:369−85 doi: 10.1007/s00018-009-0169-1 |
[29] |
Zhu Y, Zhou Z. 2021. The genotype-specific laccase gene expression and lignin deposition patterns in apple root during Pythium ultimum infection. Fruit Research 1:12 doi: 10.48130/FruRes-2021-0012 |
[30] |
Antošová Z, Sychrová H. 2016. Yeast hosts for the production of recombinant laccases: a review. Molecular Biotechnology 58:93−116 doi: 10.1007/s12033-015-9910-1 |
[31] |
Ning N, Tan H, Sun X, Ni J. 2017. Advance of heterologous expression study of eukaryote-origin laccases. Chinese Journal of Biotechnology 33:565−77 doi: 10.13345/j.cjb.160352 |
[32] |
Ma H, Zheng N, Chen Y, Jiang L. 2021. Laccase-like catalytic activity of Cu-tannic acid nanohybrids and their application for epinephrine detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects 613:126105 doi: 10.1016/j.colsurfa.2020.126105 |
[33] |
Jiao J, Yang X, Jin LN, Gao J, Zhou Y, et al. 2016. Conservative and variability of the important functional sites in a laccase from Bacillus subtilis. Chemical Journal of Chinese Universities 37(7):1320−27 doi: 10.7503/cjcu20160092 |
[34] |
Gao LZ, Yan XY. 2013. Discovery and current application of nanozyme. Progress In Biochemistry And Biophysics 40:892−902 doi: 10.3724/SP.J.1206.2013.00409 |
[35] |
Niu J, Sun S, Liu P, Zhang X, Mu X. 2023. Copper-based nanozymes: properties and applications in biomedicine. Journal of Inorganic Materials 38(5):489−502 doi: 10.15541/jim20220716 |
[36] |
Amalraj A, Narayanan M, Perumal P. 2022. Highly efficient peroxidase-like activity of a metal-oxide-incorporated CeO2-MIL(Fe) metal-organic framework and its application in the colorimetric detection of melamine and mercury ions via induced hydrogen and covalent bonds. Analyst 147:3234−47 doi: 10.1039/d2an00864e |
[37] |
Yang L, Guo XY, Zheng QH, Zhang Y, Yao L, et al. 2023. Construction of platinum nanozyme by using carboxymethylcellulose with improved laccase-like activity for phenolic compounds detection. Sensors and Actuators B: Chemical 393:134165 doi: 10.1016/j.snb.2023.134165 |
[38] |
Chen Z, Li S, Yang F, Yue W. 2024. Construction of a colorimetric sensor array for the identification of phenolic compounds by the laccase-like activity of N-doped manganese oxide. Talanta 268:125324 doi: 10.1016/j.talanta.2023.125324 |
[39] |
Yin Q, Wang Y, Yang D, Yang Y, Zhu Y. 2024. A colorimetric detection of dopamine in urine and serum based on the CeO2@ZIF-8/Cu-CDs laccase-like nanozyme activity. Luminescence 39:e4684 doi: 10.1002/bio.4684 |
[40] |
Wang P, Chen R, Jia Y, Xu Y, Bai S, et al. 2024. Cu-chelated polydopamine nanozymes with laccase-like activity for photothermal catalytic degradation of dyes. Journal of Colloid and Interface Science 669:712−22 doi: 10.1016/j.jcis.2024.04.124 |
[41] |
Wang J, Huang R, Qi W, Su R, He Z. 2022. Preparation of amorphous MOF based biomimetic nanozyme with high laccase- and catecholase-like activity for the degradation and detection of phenolic compounds. Chemical Engineering Journal 434:134677 doi: 10.1016/j.cej.2022.134677 |
[42] |
Niu X, He H, Ran H, Wu Z, Tang Y, et al. 2023. Rapid colorimetric sensor for ultrasensitive and highly selective detection of Fumonisin B1 in cereal based on laccase-mimicking activity of silver phosphate nanoparticles. Food Chemistry 429:136903 doi: 10.1016/j.foodchem.2023.136903 |
[43] |
Jadhav SB, Singhal RS. 2014. Laccase-gum Arabic conjugate for preparation of water-soluble oligomer of catechin with enhanced antioxidant activity. Food Chemistry 150:9−16 doi: 10.1016/j.foodchem.2013.10.127 |
[44] |
Alam AU, Deen MJ. 2020. Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes. Analytical Chemistry 92:5532−39 doi: 10.1021/acs.analchem.0c00402 |
[45] |
Ribes A, Aznar E, Bernardos A, Marcos MD, Amorós P, et al. 2017. Fluorogenic sensing of carcinogenic bisphenol A using aptamer-capped mesoporous silica nanoparticles. Chemistry-a European Journal 23:8581−84 doi: 10.1002/chem.201701024 |
[46] |
Kuang H, Yin H, Liu L, Xu L, Ma W, et al. 2014. Asymmetric plasmonic aptasensor for sensitive detection of bisphenol A. ACS Applied Materials & Interfaces 6:364−69 doi: 10.1021/am4043678 |
[47] |
Abraham A, Chakraborty P. 2020. A review on sources and health impacts of bisphenol A. Reviews on Environmental Health 35:201−10 doi: 10.1515/reveh-2019-0034 |