[1]

Qi X, Wang H, Chen S, Feng J, Chen H, et al. 2022. The genome of single-petal jasmine (Jasminum sambac) provides insights into heat stress tolerance and aroma compound biosynthesis. Frontiers in Plant Science 13:1045194

doi: 10.3389/fpls.2022.1045194
[2]

Qi X, Wang H, Liu S, Chen S, Feng J, et al. 2024. The chromosome-level genome of double-petal phenotype jasmine provides insights into the biosynthesis of floral scent. Horticultural Plant Journal 10:259−72

doi: 10.1016/j.hpj.2023.03.006
[3]

Deng Y, Jia X, Liang L, Gu C, Sun X. 2016. Morphological anatomy, sporogenesis and gametogenesis in flowering process of jasmine (Jasminum sambac Aiton). Scientia Horticulturae 198:257−66

doi: 10.1016/j.scienta.2015.11.036
[4]

Deng Y, Sun X, Gu C, Jia X, Liang L, et al. 2017. Identification of pre-fertilization reproductive barriers and the underlying cytological mechanism in crosses among three petal-types of Jasminum sambac and their relevance to phylogenetic relationships. PLoS One 12:e0176026

doi: 10.1371/journal.pone.0176026
[5]

Deng Y, Liang L, Sun X, Jia X, Gu C, et al. 2018. Ultrastructural abnormalities in pollen and anther wall development may lead to low pollen viability in jasmine (Jasminum sambac (L.) Aiton, Oleaceae). South African Journal of Botany 114:69−77

doi: 10.1016/j.sajb.2017.10.014
[6]

Hafidh S, Fíla J, Honys D. 2016. Male gametophyte development and function in angiosperms: a general concept. Plant Reproduction 29:31−51

doi: 10.1007/s00497-015-0272-4
[7]

Ariizumi T, Toriyama K. 2011. Genetic regulation of sporopollenin synthesis and pollen exine development. Annual Review of Plant Biology 62:437−60

doi: 10.1146/annurev-arplant-042809-112312
[8]

Jaffri S, MacAlister C. 2021. Sequential deposition and remodeling of cell wall polymers during tomato pollen development. Frontiers in Plant Science 12:703713

doi: 10.3389/fpls.2021.703713
[9]

Gómez J, Talle B, Wilson Z. 2015. Anther and pollen development: a conserved developmental pathway. Journal of Integrative Plant Biology 57:876−91

doi: 10.1111/jipb.12425
[10]

Hou Q, An X, Ma B, Wu S, Wei X, et al. 2023. ZmMS1/ZmLBD30-orchestrated transcriptional regulatory networks precisely control pollen exine development. Molecular Plant 16:1321−38

doi: 10.1016/j.molp.2023.07.010
[11]

Jaffri S, Scheer H, MacAlister C. 2023. The hydroxyproline O-arabinosyltransferase FIN4 is required for tomato pollen intine development. Plant Reproduction 36:173−91

doi: 10.1007/s00497-023-00459-6
[12]

Yang H, Liu F, Wang W, Rui Q, Li G, et al. 2023. OsTKPR2 is part of a sporopollenin-producing metabolon required for exine formation in rice. Journal of Experimental Botany 74:1911−25

doi: 10.1093/jxb/erad016
[13]

Li T, Yang Y, Liu H, Dossou S, Zhou F, et al. 2022. Overexpression of sesame polyketide synthase A leads to abnormal pollen development in Arabidopsis. BMC Plant Biology 22:165

doi: 10.1186/s12870-022-03551-7
[14]

Xu L, Tang Y, Yang Y, Wang D, Wang H, et al. 2023. Microspore-expressed SCULP1 is required for p-coumaroylation of sporopollenin, exine integrity, and pollen development in wheat. New Phytologist 239:102−15

doi: 10.1111/nph.18917
[15]

Zhang Y, He R, Lian J, Zhou Y, Zhang F, et al. 2020. OsmiR528 regulates rice-pollen intine formation by targeting an uclacyanin to influence flavonoid metabolism. Proceedings of the National Academy of Sciences of the United States of America 117:727−32

doi: 10.1073/pnas.1810968117
[16]

Chen X, Zhang Y, Yin W, Wei G, Xu H, et al. 2023. Full-length EFOP3 and EFOP4 proteins are essential for pollen intine development in Arabidopsis thaliana. The Plant Journal 115:37−51

doi: 10.1111/tpj.16207
[17]

Leszczuk A, Szczuka E, Zdunek A. 2019. Arabinogalactan proteins: distribution during the development of male and female gametophytes. Plant Physiology and Biochemistry 135:9−18

doi: 10.1016/j.plaphy.2018.11.023
[18]

Ashagre H, Zaltzman D, Idan-Molakandov A, Romano H, Tzfadia O, et al. 2021. FASCICLIN-LIKE 18 is a new player regulating root elongation in Arabidopsis thaliana. Frontiers in Plant Science 12:645286

doi: 10.3389/fpls.2021.645286
[19]

Huang H, Miao Y, Zhang Y, Huang L, Cao J, et al. 2021. Comprehensive analysis of arabinogalactan protein-encoding genes reveals the involvement of three BrFLA genes in pollen germination in Brassica rapa. International Journal of Molecular Sciences 22:13142

doi: 10.3390/ijms222313142
[20]

Zhang Y, Zhou F, Wang H, Chen Y, Yin T, et al. 2023. Genome-wide comparative analysis of the fasciclin-like arabinogalactan proteins (FLAs) in Salicacea and identification of secondary tissue development-related genes. International Journal of Molecular Sciences 24:1481

doi: 10.3390/ijms24021481
[21]

Faik A, Abouzouhair J, Sarhan F. 2006. Putative fasciclin-like arabinogalactanproteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): identification and bioinformatic analyses. Molecular Genetics and Genomics 276:478−94

doi: 10.1007/s00438-006-0159-z
[22]

He J, Zhao H, Cheng Z, Ke Y, Liu J, et al. 2019. Evolution analysis of the fasciclin-like arabinogalactan proteins in plants shows variable fasciclin-AGP domain constitutions. International Journal of Molecular Sciences 20:1945

doi: 10.3390/ijms20081945
[23]

Johnson K, Jones B, Bacic A, Schultz C. 2003. The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiology 133:1911−25

doi: 10.1104/pp.103.031237
[24]

Ma H, Zhao J. 2010. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). Journal of Experimental Botany 61:2647−68

doi: 10.1093/jxb/erq104
[25]

Meng J, Hu B, Yi G, Li X, Chen H, et al. 2020. Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. Plant Cell Reports 39:693−708

doi: 10.1007/s00299-020-02524-0
[26]

Hossain M, Ahmed B, Ullah M, Aktar N, Haque M, et al. 2020. Genome-wide identification of fasciclin-like arabinogalactan proteins in jute and their expression pattern during fiber formation. Molecular Biology Reports 47:7815−29

doi: 10.1007/s11033-020-05858-w
[27]

Hozumi A, Bera S, Fujiwara D, Obayashi T, Yokoyama R, et al. 2017. Arabinogalactan proteins accumulate in the cell walls of searching hyphae of the stem parasitic plants, Cuscuta campestris and Cuscuta japonica. Plant and Cell Physiology 58:1868−77

doi: 10.1093/pcp/pcx121
[28]

MacMillan C, Mansfield S, Stachurski Z, Evans R, Southerton S. 2010. Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. The Plant Journal 62:689−703

doi: 10.1111/j.1365-313X.2010.04181.x
[29]

Zhen C, Hua X, Jiang X, Tong G, Li C, et al. 2023. Cas9/gRNA-mediated mutations in PtrFLA40 and PtrFLA45 reveal redundant roles in modulating wood cell size and SCW synthesis in poplar. International Journal of Molecular Sciences 24:427

doi: 10.3390/ijms24010427
[30]

Tan H, Liang W, Hu J, Zhang D. 2012. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Development Cell 22:1127−37

doi: 10.1016/j.devcel.2012.04.011
[31]

Li J, Yu M, Geng L, Zhao J. 2010. The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. The Plant Journal 64:482−97

doi: 10.1111/j.1365-313X.2010.04344.x
[32]

Miao Y, Cao J, Huang L, Yu Y, Lin S. 2021. FLA14 is required for pollen development and preventing premature pollen germination under high humidity in Arabidopsis. BMC Plant Biology 21:254

doi: 10.1186/s12870-021-03038-x
[33]

Ma Y, MacMillan C, Vries L, Mansfield S, Hao P, et al. 2022. FLA11 and FLA12 glycoproteins fine-tune stem secondary wall properties in response to mechanical stresses. New Phytologist 233:1750−67

doi: 10.1111/nph.17898
[34]

Wang H, Qi X, Chen S, Feng J, Chen H, et al. 2021. An integrated transcriptomic and proteomic approach to dynamically study the mechanism of pollen-pistil interactions during jasmine crossing. Journal of Proteomics 249:104380

doi: 10.1016/j.jprot.2021.104380
[35]

Deng Y, Li C, Shao Q, Ye X, She J. 2012. Differential responses of double petal and multi petal jasmine to shading: I. Photosynthetic characteristics and chloroplast ultrastructure. Plant Physiology and Biochemistry 55:93−102

doi: 10.1016/j.plaphy.2012.03.006
[36]

Qi X, Qu Y, Gao R, Jiang J, Fang W, et al. 2019. The heterologous expression of a Chrysanthemum nankingense TCP transcription factor blocks cell division in yeast and Arabidopsis thaliana. International Journal of Molecular Sciences 20:4848

doi: 10.3390/ijms20194848
[37]

Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, et al. 2007. Clustal W and clustal X version 2.0. Bioinformatics 23:2947−48

doi: 10.1093/bioinformatics/btm404
[38]

Cheng P, Bi D, Chen J, Zhao M, Wang Y, et al. 2023. Genome-wide identification and analysis of TCP transcription factor genes in Rosa chinensis in response to abiotic stress and fungal diseases. Ornamental Plant Research 3:3

doi: 10.48130/OPR-2023-0003
[39]

Livak K, Schmittgen T. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[40]

Wang C, Guthrie C, Sarmast M, Dehesh K. 2014. BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription, defining a flowering time checkpoint in Arabidopsis. The Plant Cell 26:3589−602

doi: 10.1105/tpc.114.130252
[41]

Ahmad S, Yuan C, Cong T, Yang Q, Yang Y, et al. 2022. Transcriptome and chemical analyses identify candidate genes associated with flower color shift in a natural mutant of Chrysanthemum × morifolium. Ornamental Plant Research 2:19

doi: 10.48130/OPR-2022-0019
[42]

Götz S, García-Gómez J, Terol J, Williams T, Nagaraj S, et al. 2008. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research 36:3420−35

doi: 10.1093/nar/gkn176
[43]

Alexander M. 1969. Differential staining of aborted and non-aborted pollen. Stain Technology 44:117−22

doi: 10.3109/10520296909063335
[44]

Chen Y, McCormick S. 1996. Sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development 122:3243−53

doi: 10.1242/dev.122.10.3243
[45]

Deng Y, Teng N, Chen S, Chen F, Guan Z, et al. 2010. Reproductive barriers in the intergeneric hybridization between Chrysanthemum grandiflorum (Ramat.) Kitam. and Ajania przewalskii Poljak. (Asteraceae). Euphytica 174:41−50

doi: 10.1007/s10681-009-0113-3
[46]

Deng Y, Wan Y, Liu W, Zhang L, Zhou K, et al. 2022. OsFLA1 encodes a fasciclin-like arabinogalactan protein and affects pollen exine development in rice. Theoretical and Applied Genetics 135:1247−62

doi: 10.1007/s00122-021-04028-1
[47]

Lu M, Zhou J, Jiang S, Zeng Y, Li C, et al. 2023. The fasciclin-like arabinogalactan proteins of Camellia oil tree are involved in pollen tube growth. Plant Science 326:111518

doi: 10.1016/j.plantsci.2022.111518
[48]

Sun W, Kieliszewski M, Showalter A. 2004. Overexpression of tomato LeAGP-1 arabinogalactan-protein promotes lateral branching and hampers reproductive development. The Plant Journal 40:870−81

doi: 10.1111/j.1365-313X.2004.02274.x
[49]

Zhou D, Zou T, Zhang K, Xiong P, Zhou F, et al. 2022. DEAP1 encodes a fasciclin-like arabinogalactan protein required for male fertility in rice. Journal of Integrative Plant Biology 64:1430−47

doi: 10.1111/jipb.13271
[50]

Lin S, Huang L, Miao Y, Yu Y, Peng R, et al. 2019. Constitutive overexpression of the classical arabinogalactan protein gene BcMF18 in Arabidopsis causes defects in pollen intine morphogenesis. Plant Growth Regulation 88:159−71

doi: 10.1007/s10725-019-00496-0
[51]

Lin S, Dong H, Zhang F, Qiu L, Wang F, et al. 2014. BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris. Annals of Botany 113:777−88

doi: 10.1093/aob/mct315
[52]

Lin S, Yue X, Miao Y, Yu Y, Dong H, et al. 2018. The distinct functions of two classical arabinogalactan proteins BcMF8 and BcMF18 during pollen wall development in Brassica campestris. The Plant Journal 94:60−76

doi: 10.1111/tpj.13842
[53]

Purushotham P, Ho R, Zimmer J. 2020. Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science 369:1089−94

doi: 10.1126/science.abb2978
[54]

Taylor N, Howells R, Huttly A, Vickers K, Turner S. 2003. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proceedings of the National Academy of Sciences of the United States of America 100:1450−55

doi: 10.1073/pnas.0337628100
[55]

Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, et al. 2007. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 104:15566−71

doi: 10.1073/pnas.0706592104
[56]

Nairn C, Haselkorn T. 2005. Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms. New Phytologist 166:907−15

doi: 10.1111/j.1469-8137.2005.01372.x
[57]

Sena J, Lachance D, Duval I, Nguyen T, Stewart D, et al. 2019. Functional analysis of the PgCesA3 white spruce cellulose synthase gene promoter in secondary xylem. Frontiers in Plant Science 10:626

doi: 10.3389/fpls.2019.00626
[58]

Abbas M, Peszlen I, Shi R, Kim H, Katahira R, et al. 2020. Involvement of CesA4, CesA7-A/B and CesA8-A/B in secondary wall formation in Populus trichocarpa wood. Tree Physiology 40:72−89

doi: 10.1093/treephys/tpz020
[59]

Seifert G, Roberts K. 2007. The biology of arabinogalactan proteins. Annual Review of Plant Biology 58:137−61

doi: 10.1146/annurev.arplant.58.032806.103801
[60]

Liu H, Shi R, Wang X, Pan Y, Li Z, et al. 2013. Characterization and expression analysis of a fiber differentially expressed fasciclin-like arabinogalactan protein gene in sea island cotton fibers. PLoS One 8:e70185

doi: 10.1371/journal.pone.0070185
[61]

Niu Z, Bai Q, Lv J, Tian W, Mao K, et al. 2024. The fasciclin-like arabinogalactan protein FLA11 of Ostrya rehderiana impacts wood formation and salt stress in Populus. Environmental and Experimental Botany 219:105651

doi: 10.1016/j.envexpbot.2024.105651