[1]

Shukla P, Chaurasia P, Younis K, Qadri OS, Ahmad Faridi S, et al. 2019. Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management. Nanotechnology for Environmental Engineering 4:11

doi: 10.1007/s41204-019-0058-2
[2]

Pagano A, Pagano P, Dueñas C, Griffo A, Gaonkar SS, et al. 2023. Seed quality assessment and improvement between advancing agriculture and changing environments. In Global Climate Change and Plant Stress Management, eds Ansari MW, Singh AK, Tuteja N. US: John Wiley & Sons Ltd. pp. 317−34. doi: 10.1002/9781119858553.ch22

[3]

De Vitis M, Hay FR, Dickie JB, Trivedi C, Choi J, et al. 2020. Seed storage: maintaining seed viability and vigor for restoration use. Restoration Ecology 28:S249−S255

doi: 10.1111/rec.13174
[4]

Kalwani M, Chakdar H, Srivastava A, Pabbi S, Shukla P. 2022. Effects of nanofertilizers on soil and plant-associated microbial communities: emerging trends and perspectives. Chemosphere 287:132107

doi: 10.1016/j.chemosphere.2021.132107
[5]

Shelar A, Nile SH, Singh AV, Rothenstein D, Bill J, et al. 2023. Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: challenges, risk assessment, and future perspectives. Nano-Micro Letters 15:54

doi: 10.1007/s40820-023-01025-5
[6]

Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P. 2017. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports 7:8263

doi: 10.1038/s41598-017-08669-5
[7]

Basu S, Banik BK. 2024. Nanoparticles as catalysts: exploring potential applications. Current Organocatalysis 11(4):265−72

doi: 10.2174/0122133372285610231227094959
[8]

Nair SA. 2022. Seed priming-a traditional technique to enhance crop establishment and to improve livelihood of farmers. Advances in Crop Science and Technology 10:11

doi: 10.4172/2329-8863.1000539
[9]

May LH, Milthorpe EJ, Milthorpe FL. 1962. Pre-sowing hardening of plants to drought: an appraisal of the contributions by PA Genkel. Field Crop Abstract 15(2):93−98

[10]

Ellis JE. 1963. The influence of treating tomato seed with nutrient solutions on emergence rate and seedling growth. Proceedings of the American Society for Horticultural Science 83:684−87

[11]

Heydecker W, Higgins J, Gulliver RL. 1973. Accelerated germination by osmotic seed treatment. Nature 246:42−44

doi: 10.1038/246042a0
[12]

Kaur S, Gupta AK, Kaur N. 2002. Effect of osmo- and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regulation 37:17−22

doi: 10.1023/A:1020310008830
[13]

Giri GS, Schillinger WF. 2003. Seed priming winter wheat for germination, emergence, and yield. Crop Science 43(6):2135−41

doi: 10.2135/cropsci2003.2135
[14]

Hill H, Bradford KJ, Cunningham J, Taylor AG. 2008. Primed lettuce seeds exhibit increased sensitivity to moisture during aging. Acta Horticulturae 782:135−42

doi: 10.17660/actahortic.2008.782.14
[15]

Khan A, Numan M, Khan AL, Lee IJ, Imran M, et al. 2020. Melatonin: awakening the defense mechanisms during plant oxidative stress. Plants 9(4):407

doi: 10.3390/plants9040407
[16]

Galland M, Huguet R, Arc E, Cueff G, Job D, et al. 2014. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. Molecular & Cellular Proteomics 13:252−68

doi: 10.1074/mcp.M113.032227
[17]

Varier A, Vari AK, Dadlani M. 2010. The subcellular basis of seed priming. Current Science 99:450−56

[18]

Zhang CF, Hu J, Lou J, Zhang Y, Hu WM. 2007. Sand priming in relation to physiological changes in seed germination and seedling growth of waxy maize under high-salt stress. Seed Science & Technology 35:733−38

doi: 10.15258/sst.2007.35.3.19
[19]

Basra SMA, Farooq M, Tabassam R, Ahmad N. 2005. Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (Oryza sativa L.). Seed Science and Technology 33:623−28

doi: 10.15258/sst.2005.33.3.09
[20]

Ella ES, Dionisio-Sese ML, Ismail AM. 2011. Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions. AoB PLANTS 2011:plr007

doi: 10.1093/aobpla/plr007
[21]

Sathish S. 2009. Effect of seed priming on physiological, biochemical and molecular changes in maize hybrid (COH(M)5) and its parents. Thesis. TNAU, Coimbatore

[22]

Lutts S, Benincasa P, Wojtyla L, Kubala S, Pace R, et al. 2016. Seed priming: new comprehensive approaches for an old empirical technique. In New Challenges in Seed Biology - Basic and Translational Research Driving Seed Technology, eds AraújoS, Balestrazzi A. London: InTech. doi:10.5772/64420

[23]

Vashisth A, Nagarajan S. 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology 167:149−56

doi: 10.1016/j.jplph.2009.08.011
[24]

Pandita VK, Anand A, Nagarajan S. 2007. Enhancement of seed germination in hot pepper following presowing treatments. Seed Science and Technology 35:282−90

doi: 10.15258/sst.2007.35.2.04
[25]

Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H. 2013. Seeds: physiology of development, germination and dormancy. New York, NY: Springer. doi: 10.1007/978-1-4614-4693-4

[26]

Rasool Mir H, Kumar Yadav S, Ercisli S, Al-Huqail AA, Soliman DA, et al. 2021. Association of DNA biosynthesis with planting value enhancement in hydroprimed maize seeds. Saudi Journal of Biological Sciences 28:2634−40

doi: 10.1016/j.sjbs.2021.02.068
[27]

Dadlani M, Yadava DK. 2023. Seed science and technology: biology, production, quality. Singapore: Springer. doi: 10.1007/978-981-19-5888-5

[28]

Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55:373−99

doi: 10.1146/annurev.arplant.55.031903.141701
[29]

Toorop PE, van Aelst AC, Hilhorst HWM. 1998. Endosperm cap weakening and endo-β-mannanase activity during priming of tomato (Lycopersicon esculentum cv. Moneymaker) seeds are initiated upon crossing a threshold water potential. Seed Science Research 8:483−92

doi: 10.1017/s0960258500004451
[30]

Chen K, Fessehaie A, Arora R. 2012. Dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea L. cv. Bloomsdale: possible role in stress tolerance. Plant Science 183:27−36

doi: 10.1016/j.plantsci.2011.11.002
[31]

Soeda Y, Konings MCJM, Vorst O, van Houwelingen AMML, Stoopen GM, et al. 2005. Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiology 137:354−68

doi: 10.1104/pp.104.051664
[32]

Mondal S, Yadav KN, Vikram N, Panda D. 2024. Physiological and molecular basis of seed priming with nanomaterials. In Nanofertilizer Synthesis, ed. Abd-Elsalam KA. Amsterdam: Elsevier. pp. 345−58. doi: 10.1016/b978-0-443-13535-4.00028-6

[33]

Lukose R. 2013. Toxic effect of nanoparticles of metals (Pb, Cd, Ag, Mn, Fe and Zn) and metal oxides (ZnO, CuO, TiO2 and CeO2) in human body. Asian Journal of Research in Chemistry 6(12):1179−82

[34]

Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK. 2016. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Science of The Total Environment 573:1089−102

doi: 10.1016/j.scitotenv.2016.08.120
[35]

An J, Hu P, Li F, Wu H, Shen Y, et al. 2020. Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano 7(8):2214−28

doi: 10.1039/D0EN00387E
[36]

Ye Y, Cota-Ruiz K, Hernández-Viezcas JA, Valdés C, Medina-Velo IA, et al. 2020. Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: a sustainable approach for agriculture. ACS Sustainable Chemistry & Engineering 8:1427−36

doi: 10.1021/acssuschemeng.9b05615
[37]

Malik A, Mor VS, Tokas J, Punia H, Malik S, et al. 2021. Biostimulant-treated seedlings under sustainable agriculture: a global perspective facing climate change. Agronomy 11:14

doi: 10.3390/agronomy11010014
[38]

Siddiqui H, Ahmed KBM, Sami F, Hayat S. 2020. Silicon nanoparticles and plants: current knowledge and future perspectives. Sustainable Agriculture Reviews 41, eds Hayat S, Pichtel J, Faizan M, Fariduddin Q. Cham: Springer International Publishing. pp. 129−42. doi: 10.1007/978-3-030-33996-8_7

[39]

Acharya P, Jayaprakasha GK, Semper J, Patil BS. 2020. 1H nuclear magnetic resonance and liquid chromatography coupled with mass spectrometry-based metabolomics reveal enhancement of growth-promoting metabolites in onion seedlings treated with green-synthesized nanomaterials. Journal of Agricultural and Food Chemistry 68:13206−20

doi: 10.1021/acs.jafc.0c00817
[40]

Joshi A, Kaur S, Dharamvir K, Nayyar H, Verma G. 2018. Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). Journal of the Science of Food and Agriculture 98:3148−60

doi: 10.1002/jsfa.8818
[41]

Sundaria N, Singh M, Upreti P, Chauhan RP, Jaiswal JP, et al. 2019. Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. Journal of Plant Growth Regulation 38:122−31

doi: 10.1007/s00344-018-9818-7
[42]

Hussain A, Rizwan M, Ali Q, Ali S. 2019. Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environmental Science and Pollution Research International 26:7579−88

doi: 10.1007/s11356-019-04210-5
[43]

Abou-Zeid HM, Ismail GSM, Abdel-Latif SA. 2021. Influence of seed priming with ZnO nanoparticles on the salt-induced damages in wheat (Triticum aestivum L.) plants. Journal of Plant Nutrition 44:629−43

doi: 10.1080/01904167.2020.1849288
[44]

Duran NM, Savassa SM, de Lima RG, de Almeida E, Linhares FS, et al. 2017. X-ray spectroscopy uncovering the effects of Cu based nanoparticle concentration and structure on Phaseolus vulgaris germination and seedling development. Journal of Agricultural and Food Chemistry 65:7874−84

doi: 10.1021/acs.jafc.7b03014
[45]

Kannaujia R, Srivastava CM, Prasad V, Singh BN, Pandey V. 2019. Phyllanthus Emblica fruit extract stabilized biogenic silver nanoparticles as a growth promoter of wheat varieties by reducing ROS toxicity. Plant Physiology and Biochemistry 142:460−71

doi: 10.1016/j.plaphy.2019.08.008
[46]

Ahuja R, Sidhu A, Bala A. 2019. Synthesis and evaluation of iron(ii) sulfide aqua nanoparticles (FeS-NPs) against Fusarium verticillioides causing sheath rot and seed discoloration of rice. European Journal of Plant Pathology 155:163−71

doi: 10.1007/s10658-019-01758-3
[47]

Zhang H, Wang R, Chen Z, Cui P, Lu H, et al. 2021. The effect of zinc oxide nanoparticles for enhancing rice (Oryza sativa L.) yield and quality. Agriculture 11(12):1247

doi: 10.3390/agriculture11121247
[48]

Das CK, Jangir H, Kumar J, Verma S, Mahapatra SS, et al. 2018. Nano-pyrite seed dressing: a sustainable design for NPK equivalent rice production. Nanotechnology for Environmental Engineering 3:14

doi: 10.1007/s41204-018-0043-1
[49]

Guha T, Ravikumar KVG, Mukherjee A, Mukherjee A, Kundu R. 2018. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiology and Biochemistry 127:403−13

doi: 10.1016/j.plaphy.2018.04.014
[50]

Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, et al. 2019. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules 127:126−35

doi: 10.1016/j.ijbiomac.2018.12.274
[51]

Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, et al. 2016. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal of Agricultural and Food Chemistry 64(31):6148−55

doi: 10.1021/acs.jafc.6b02239
[52]

Alhammad BA, Ahmad A, Seleiman MF, Tola E. 2023. Seed priming with nanoparticles and 24-epibrassinolide improved seed germination and enzymatic performance of Zea mays L. in salt-stressed soil. Plants 12(4):690

doi: 10.3390/plants12040690
[53]

Savassa SM, Duran NM, Rodrigues ES, de Almeida E, van Gestel CAM, et al. 2018. Effects of ZnO nanoparticles on Phaseolus vulgaris germination and seedling development determined by X-ray spectroscopy. ACS Applied Nano Materials 1:6414−26

doi: 10.1021/acsanm.8b01619
[54]

Chau NH, Doan QH, Chu TH, Nguyen TT, Dao Trong H, et al. 2019. Effects of different nanoscale microelement-containing formulations for presowing seed treatment on growth of soybean seedlings. Journal of Chemistry 2019:8060316

doi: 10.1155/2019/8060316
[55]

Spagnoletti FN, Spedalieri C, Kronberg F, Giacometti R. 2019. Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina Phaseolina. Journal of Environmental Management 231:457−66

doi: 10.1016/j.jenvman.2018.10.081
[56]

Pereira ADES, Oliveira HC, Fraceto LF. 2019. Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study. Scientific Reports 9:7135

doi: 10.1038/s41598-019-43494-y
[57]

Falsini S, Clemente I, Papini A, Tani C, Schiff S, et al. 2019. When sustainable nanochemistry meets agriculture: lignin nanocapsules for bioactive compound delivery to plantlets. ACS Sustainable Chemistry & Engineering 7(24):19935−42

doi: 10.1021/acssuschemeng.9b05462
[58]

García-Locascio E, Valenzuela EI, Cervantes-Avilés P. 2024. Impact of seed priming with Selenium nanoparticles on germination and seedlings growth of tomato. Scientific Reports 14:6726

doi: 10.1038/s41598-024-57049-3
[59]

Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS. 2020. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports 10:5037

doi: 10.1038/s41598-020-61696-7
[60]

Waqas Mazhar M, Ishtiaq M, Maqbool M, Akram R, Shahid A, et al. 2022. Seed priming with iron oxide nanoparticles raises biomass production and agronomic profile of water-stressed flax plants. Agronomy 12:982

doi: 10.3390/agronomy12050982
[61]

Kasote DM, Lee JHJ, Jayaprakasha GK, Patil BS. 2019. Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustainable Chemistry & Engineering 7(5):5142−51

doi: 10.1021/acssuschemeng.8b06013
[62]

Dileep Kumar G, Raja K, Natarajan N, Govindaraju K, Subramanian KS. 2020. Invigouration treatment of metal and metal oxide nanoparticles for improving the seed quality of aged chilli seeds (Capsicum annum L.). Materials Chemistry and Physics 242:122492

doi: 10.1016/j.matchemphys.2019.122492
[63]

Farhana, Munis MFH, Alamer KH, Althobaiti AT, Kamal A, et al. 2022. ZnO nanoparticle-mediated seed priming induces biochemical and antioxidant changes in chickpea to alleviate Fusarium wilt. Journal of Fungi 8(7):753

doi: 10.3390/jof8070753
[64]

Shcherbakova EN, Shcherbakov AV, Andronov EE, Gonchar LN, Kalenskaya SM, et al. 2017. Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Symbiosis 73:57−69

doi: 10.1007/s13199-016-0472-1
[65]

Maswada HF, Djanaguiraman M, Prasad PVV. 2018. Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of Sorghum. Journal of Agronomy and Crop Science 204(6):577−87

doi: 10.1111/jac.12280
[66]

Nandhini M, Rajini SB, Udayashankar AC, Niranjana SR, Lund OS, et al. 2019. Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Protection 121:103−12

doi: 10.1016/j.cropro.2019.03.015
[67]

Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS. 2019. Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustainable Chemistry & Engineering 7(17):14580−90

doi: 10.1021/acssuschemeng.9b02180
[68]

Guo H, White JC, Wang Z, Xing B. 2018. Nano-enabled fertilizers to control the release and use efficiency of nutrients. Current Opinion in Environmental Science & Health 6:77−83

doi: 10.1016/j.coesh.2018.07.009
[69]

Metch JW, Burrows ND, Murphy CJ, Pruden A, Vikesland PJ. 2018. Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design. Nature Nanotechnology 13(3):253−59

doi: 10.1038/s41565-017-0029-3
[70]

Zafar S, Perveen S, Kamran Khan M, Shaheen MR, Hussain R, et al. 2022. Effect of zinc nanoparticles seed priming and foliar application on the growth and physio-biochemical indices of spinach (Spinacia oleracea L.) under salt stress. PLoS One 17:e0263194

doi: 10.1371/journal.pone.0263194
[71]

Khan MN, Li Y, Fu C, Hu J, Chen L, et al. 2022. CeO2 nanoparticles seed priming increases salicylic acid level and ROS scavenging ability to improve rapeseed salt tolerance. Global Challenges 6:2200025

doi: 10.1002/gch2.202200025
[72]

Mahdy AM, Sherif FK, Elkhatib EA, Fathi NO, Ahmed MH. 2020. Seed priming in nanoparticles of water treatment residual can increase the germination and growth of cucumber seedling under salinity stress. Journal of Plant Nutrition 43:1862−74

doi: 10.1080/01904167.2020.1750647
[73]

Gautam A, Rusli LS, Yaacob JS, Kumar V, Guleria P. 2024. Nanopriming with magnesium oxide nanoparticles enhanced antioxidant potential and nutritional richness of radish leaves grown in field. Clean Technologies and Environmental Policy 10:1−17

doi: 10.1007/s10098-023-02697-8
[74]

Bano N, Khan S, Hamid Y, Bano F, Khan AG, et al. 2024. Seed nano-priming with multiple nanoparticles enhanced the growth parameters of lettuce and mitigated cadmium (Cd) bio-toxicity: an advanced technique for remediation of Cd contaminated environments. Environmental Pollution 344:123300

doi: 10.1016/j.envpol.2024.123300
[75]

Joudeh N, Linke D. 2022. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology 20:262

doi: 10.1186/s12951-022-01477-8
[76]

Panpatte DG, Jhala YK, Shelat HN, Vyas RV. 2016. Nanoparticles: the next generation technology for sustainable agriculture. Microbial Inoculants in Sustainable Agricultural Productivity, eds Singh D, Singh H, Prabha R. New Delhi: Springer India. pp. 289−300. doi: 10.1007/978-81-322-2644-4_18

[77]

Arya V. 2019. Nano-approach towards sustainable agriculture and precision farming. International Journal of Advanced Engineering, Management and Science 5:639−47

doi: 10.22161/ijaems.512.5
[78]

Gohari G, Jiang M, Manganaris GA, Zhou J, Fotopoulos V. 2024. Next generation chemical priming: with a little help from our nanocarrier friends. Trends in Plant Science 29:150−66

doi: 10.1016/j.tplants.2023.11.024
[79]

Hussain M, Zahra N, Lang T, Zain M, Raza M, et al. 2023. Integrating nanotechnology with plant microbiome for next-generation crop health. Plant Physiology and Biochemistry 196:703−11

doi: 10.1016/j.plaphy.2023.02.022
[80]

Rajput VD, Kumari A, Upadhyay SK, Minkina T, Mandzhieva S, et al. 2023. Can nanomaterials improve the soil microbiome and crop productivity? Agriculture 13(2):231

doi: 10.3390/agriculture13020231
[81]

Singh A, Sengar RS, Sharma R, Rajput P, Singh AK. 2021. Nano-priming technology for sustainable agriculture. Systematics and Biogeography Technology 8:79−92

doi: 10.13187/bgt.2021.2.79
[82]

Guerra FD, Attia MF, Whitehead DC, Alexis F. 2018. Nanotechnology for environmental remediation: materials and applications. Molecules 23(7):1760

doi: 10.3390/molecules23071760
[83]

Sathiyabama M, Muthukumar S. 2020. Chitosan guar nanoparticle preparation and its in vitro antimicrobial activity towards phytopathogens of rice. International Journal of Biological Macromolecules 153:297−304

doi: 10.1016/j.ijbiomac.2020.03.001
[84]

Guha T, Gopal G, Das H, Mukherjee A, Kundu R. 2021. Nanopriming with zero-valent iron synthesized using pomegranate peel waste: a "green" approach for yield enhancement in Oryza sativa L. cv. Gonindobhog. Plant Physiology and Biochemistry 163:261−75

doi: 10.1016/j.plaphy.2021.04.006
[85]

Singh A, Agrawal S, Rajput VD, Ghazaryan K, Movsesyan HS, et al. 2023. Seed nanopriming: an innovative approach for upregulating seed germination and plant growth under salinity stress. Nanopriming Approach to Sustainable Agriculture. US: IGI Global. pp. 290−313. doi: 10.4018/978-1-6684-7232-3.ch013

[86]

Pandya P, Kumar S, Sakure AA, Rafaliya R, Patil GB. 2023. Zinc oxide nanopriming elevates wheat drought tolerance by inducing stress-responsive genes and physio-biochemical changes. Current Plant Biology 35:100292

doi: 10.1016/j.cpb.2023.100292
[87]

Kumar B, Indu, Singhal RK, Chand S, Chauhan J, et al. 2022. Nanopriming in sustainable agriculture: recent advances, emerging challenges and future prospective. New and Future Developments in Microbial Biotechnology and Bioengineering, eds Singh HB, Vaishnav A. Amsterdam: Elsevier. pp. 339−65. doi: 10.1016/b978-0-323-85581-5.00011-2

[88]

Ragab G, Saad-Allah K. 2021. Seed priming with greenly synthesized sulfur nanoparticles enhances antioxidative defense machinery and restricts oxidative injury under manganese stress in Helianthus annuus (L.) seedlings. Journal of Plant Growth Regulation 40(5):1894−902

doi: 10.1007/s00344-020-10240-y
[89]

Lee JHJ, Kasote DM. 2024. Nano-priming for inducing salinity tolerance, disease resistance, yield attributes, and alleviating heavy metal toxicity in plants. Plants 13(3):446

doi: 10.3390/plants13030446
[90]

Saranya S, Aswani R, Remakanthan A, Radhakrishnan EK. 2019. Nanotechnology in agriculture. Nanotechnology for Agriculture, eds Panpatte D, Jhala Y. Singapore: Springer. pp. 1−17. doi: 10.1007/978-981-32-9370-0_1

[91]

Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH. 2017. Role of nanomaterials in plants under challenging environments. Plant Physiology and Biochemistry 110:194−209

doi: 10.1016/j.plaphy.2016.05.038
[92]

Chandrasekaran U, Luo X, Wang Q, Shu K. 2020. Are there unidentified factors involved in the germination of nanoprimed seeds? Frontiers in Plant Science 11:832

doi: 10.3389/fpls.2020.00832
[93]

Jiang Y, Peng B, Wan Z, Kim C, Li W, et al. 2019. Nanotechnology as a key enabler for effective environmental remediation technologies. A New Paradigm for Environmental Chemistry and Toxicology, eds Jiang G, Li X. Singapore: Springer. pp. 197−207. doi: 10.1007/978-981-13-9447-8_12

[94]

Malik A, Punia H, Singh N, Singh P. 2022. Bionanomaterials-mediated seed priming for sustainable agricultural production. Bionanotechnology: Emerging Applications of Bionanomaterials, eds Barhoum A, Jeevanandam J, Danquah MK. Amsterdam: Elsevier. pp. 77−99. doi: 10.1016/b978-0-12-823915-5.00008-3

[95]

Khalil M, Kadja GTM, Ilmi MM. 2021. Advanced nanomaterials for catalysis: current progress in fine chemical synthesis, hydrocarbon processing, and renewable energy. Journal of Industrial and Engineering Chemistry 93:78−100

doi: 10.1016/j.jiec.2020.09.028
[96]

Khan MN, Li Y, Khan Z, Chen L, Liu J, et al. 2021. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities. Journal of Nanobiotechnology 19:276

doi: 10.1186/s12951-021-01026-9
[97]

Rizwan M, Ali S, Ali B, Adrees M, Arshad M, et al. 2019. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269−77

doi: 10.1016/j.chemosphere.2018.09.120
[98]

Younis ME, Abdel-Aziz HMM, Heikal YM. 2019. Nanopriming technology enhances vigor and mitotic index of aged Vicia faba seeds using chemically synthesized silver nanoparticles. South African Journal of Botany 125:393−401

doi: 10.1016/j.sajb.2019.08.018
[99]

Wu Q, Jiang X, Wu H, Zou L, Wang L, et al. 2022. Effects and mechanisms of copper oxide nanoparticles with regard to arsenic availability in soil-rice systems: adsorption behavior and microbial response. Environmental Science & Technology 56(12):8142−54

doi: 10.1021/acs.est.2c01393
[100]

Mgadi K, Ndaba B, Roopnarain A, Rama H, Adeleke R. 2024. Nanoparticle applications in agriculture: overview and response of plant-associated microorganisms. Frontiers in Microbiology 15:1354440

doi: 10.3389/fmicb.2024.1354440
[101]

Fouad AS, Hafez RM. 2018. The effects of silver ions and silver nanoparticles on cell division and expression of cdc2 gene in Allium cepa root tips. Biologia Plantarum 62:166−72

doi: 10.1007/s10535-017-0751-6
[102]

Tripathi GD, Javed Z, Dashora K. 2024. Toxicity of copper oxide nanoparticles on agriculturally important soil rhizobacteria Bacillus megaterium. Emerging Contaminants 10:100280

doi: 10.1016/j.emcon.2023.100280
[103]

Lv Z, Sun H, Du W, Li R, Mao H, et al. 2021. Interaction of different-sized ZnO nanoparticles with maize (Zea mays): accumulation, biotransformation and phytotoxicity. Science of The Total Environment 796:148927

doi: 10.1016/j.scitotenv.2021.148927
[104]

Ebbs SD, Bradfield SJ, Kumar P, White JC, Musante C, et al. 2016. Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environmental Science: Nano 3:114−26

doi: 10.1039/C5EN00161G
[105]

Asgari-Targhi G, Iranbakhsh A, Ardebili ZO. 2018. Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiology and Biochemistry 127:393−402

doi: 10.1016/j.plaphy.2018.04.013
[106]

Maity S, Pramanick K. 2020. Perspectives and challenges of micro/nanoplastics-induced toxicity with special reference to phytotoxicity. Global Change Biology 26(6):3241−50

doi: 10.1111/gcb.15074
[107]

Wang J, Zhao S, Li Z, Chai J, Feng J, et al. 2023. Phytotoxicity and the molecular response in yttrium oxide nanoparticle-treated Arabidopsis thaliana seedlings. Protoplasma 260(3):955−66

doi: 10.1007/s00709-022-01826-2
[108]

Mosquera J, García I, Liz-Marzán LM. 2018. Cellular uptake of nanoparticles versus small molecules: a matter of size. Accounts of Chemical Research 51(9):2305−13

doi: 10.1021/acs.accounts.8b00292
[109]

Kibbey TCG, Strevett KA. 2019. The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings. Chemosphere 221:703−7

doi: 10.1016/j.chemosphere.2019.01.091
[110]

Sułowicz S, Markowicz A, Dulski M, Nowak A, Środek D, et al. 2023. Assessment of the ecotoxicological impact of captan@ZnO35–45nm and captan@SiO2 20–30nm nanopesticide on non-target soil microorganisms – a 100-day case study. Applied Soil Ecology 184:104789

doi: 10.1016/j.apsoil.2022.104789
[111]

Song K, He X. 2021. How to improve seed germination with green nanopriming. Seed Science and Technology 49(2):81−92

doi: 10.15258/sst.2021.49.2.01
[112]

Sarkar N, Sharma RS, Kaushik M. 2021. Innovative application of facile single pot green synthesized CuO and CuO@APTES nanoparticles in nanopriming of Vigna radiata seeds. Environmental Science and Pollution Research International 28(11):13221−28

doi: 10.1007/s11356-020-11493-6
[113]

Ganesan VS, Paramathevar N. 2024. Utilising calcined eggshell waste as a multifunctional sustainable agent as a nano-adsorbent, photocatalyst and priming elicitor. Environmental Science and Pollution Research International 31:12112−30

doi: 10.1007/s11356-023-31777-x
[114]

Nayak H, Mangaraj S, Pradhan SR, Paikaray RK, Hossain A. 2024. Nanopriming: a comprehensive perspective for regulating seed germination of crops under stress conditions. In The Nanotechnology Driven Agriculture, eds Roy S, Hossain A. UK: CRC Press. pp. 106−16. doi: 10.1201/9781003376446-6

[115]

Ahmed F, AlOmar SY, Albalawi F, Arshi N, Dwivedi S, et al. 2021. Microwave mediated fast synthesis of silver nanoparticles and investigation of their antibacterial activities for gram-positive and gram-negative microorganisms. Crystals 11:666

doi: 10.3390/cryst11060666
[116]

Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, et al. 2016. Biopolymers regulate silver nanoparticle under microwave irradiation for effective antibacterial and antibiofilm activities. PLoS One 11:e0157612

doi: 10.1371/journal.pone.0157612
[117]

Song K, Zhao D, Sun H, Gao J, Li S, et al. 2022. Green nanopriming: responses of alfalfa (Medicago sativa L.) seedlings to alfalfa extracts capped and light-induced silver nanoparticles. BMC Plant Biology 22:323

doi: 10.1186/s12870-022-03692-9
[118]

Santhoshkumar R, Hima Parvathy A, Soniya EV. 2024. Biocompatible silver nanoparticles as nanopriming mediators for improved rice germination and root growth: a transcriptomic perspective. Plant Physiology and Biochemistry 210:108645

doi: 10.1016/j.plaphy.2024.108645
[119]

Dutta Gupta S, Pattanayak AK. 2017. Intelligent image analysis (IIA) using artificial neural network (ANN) for non-invasive estimation of chlorophyll content in micropropagated plants of potato. In Vitro Cellular & Developmental Biology - Plant 53:520−26

doi: 10.1007/s11627-017-9825-6
[120]

Rashid MU, Shah SJ, Attacha S, Khan L, Saeed J, et al. 2024. Green synthesis and characterization of zinc oxide nanoparticles using Citrus limetta peels extract and their antibacterial activity against brown and soft rot pathogens and antioxidant potential. Waste and Biomass Valorization 15:3351−66

doi: 10.1007/s12649-023-02389-w
[121]

Elizabeth MK, Uma Devi R, Parameshwar M, Ratnamala A. 2024. Magnesium sulfide nanoparticles of Hordeum vulgare: green synthesis and their nano-nutrient impact on seed priming effect, germination, root and shoot length of Brassica nigra and Trigonella foenum-graecum. Asian Journal of Chemistry 36:1308−14

doi: 10.14233/ajchem.2024.31421
[122]

Ibrahim SS, Elbehery HH, Samy A. 2024. The efficacy of green silica nanoparticles synthesized from rice straw in the management of Callosobruchus maculatus (Col., Bruchidae). Scientific Reports 14:8834

doi: 10.1038/s41598-024-58856-4
[123]

Salem AA. 2020. Comparative insecticidal activity of three forms of silica nanoparticles on some main stored product insects. Journal of Plant Protection and Pathology 11(4):225−30

doi: 10.21608/jppp.2020.96009
[124]

Madusanka HKS, Aruggoda AGB, Chathurika JAS, Weerakoon SR. 2023. Effect of seed priming of green synthesized iron oxide magnetic nanoparticles using Salvinia molesta plant extract on seed germination and seedlings growth of tomato (Solanum lycopersicum). International Journal of Advance Research and Innovative Ideas in Education 9(6):2669−86

[125]

do Espirito Santo Pereira A, Caixeta Oliveira H, Fernandes Fraceto L, Santaella C. 2021. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials 11:267

doi: 10.3390/nano11020267
[126]

Wang W, He A, Peng S, Huang J, Cui K, et al. 2018. The effect of storage condition and duration on the deterioration of primed rice seeds. Frontiers in Plant Science 9:172

doi: 10.3389/fpls.2018.00172