[1] |
Sharma P, Jha AB, Dubey RS. 2024. Addressing lanthanum toxicity in plants: sources, uptake, accumulation, and mitigation strategies. Science of The Total Environment 2024:172560 doi: 10.1016/j.scitotenv.2024.172560 |
[2] |
Chen W, Wang Z, Gong X, Sun B, Liu Y, et al. 2017. Substance flow analysis of rare earth lanthanum in China. Materials Science Forum 898:2455−63 doi: 10.4028/www.scientific.net/MSF.898.2455 |
[3] |
Yu X, Wei G, Song Y, Yu K. 2021. Potential role of mycorrhizae combined with Pinus tabuliformis in repairing soil contaminated by lanthanum and cerium. Research Square 00:1−11 doi: 10.21203/rs.3.rs-515337/v1 |
[4] |
Ben Y, Cheng M, Liu Y, Wang L, Yang Q, et al. 2023. The stimulatory effect and mechanism of low-dose lanthanum on soybean leaf cells. Journal of Hazardous Materials 441:129924 doi: 10.1016/j.jhazmat.2022.129924 |
[5] |
Liu Y, Zhang J. 2022. Lanthanum promotes bahia grass (Paspalum notatum) roots growth by improving root activity, photosynthesis and respiration. Plants 11(3):382 doi: 10.3390/plants11030382 |
[6] |
Ozturk M, Metin M, Altay V, Prasad MNV, Gul A, et al. 2023. Role of rare earth elements in plants. Plant Molecular Biology Reporter 41:345−68 doi: 10.1007/s11105-023-01369-7 |
[7] |
Jiang D, Gao W, Chen G. 2023. Toxic effects of lanthanum(III) on photosynthetic performance of rice seedlings: combined chlorophyll fluorescence, chloroplast structure and thylakoid membrane protein assessment. Ecotoxicology and Environmental Safety 267:115627 doi: 10.1016/j.ecoenv.2023.115627 |
[8] |
Song K, Gao J, Li S, Sun Y, Sun H, et al. 2021. Experimental and theoretical study of the effects of rare earth elements on growth and chlorophyll of alfalfa (Medicago sativa L.) seedling. Frontiers in Plant Science 12:731838 doi: 10.3389/fpls.2021.731838 |
[9] |
Hadizadeh H, Samiei L, Shakeri A. 2022. Chrysanthemum, an ornamental genus with considerable medicinal value: a comprehensive review. South African Journal of Botany 144:23−43 doi: 10.1016/j.sajb.2021.09.007 |
[10] |
Kotelnikova A, Fastovets I, Rogova O, Volkov DS. 2020. La, Ce and Nd in the soil-plant system in a vegetation experiment with barley (Hordeum vulgare L.). Ecotoxicology and Environmental Safety 206:111193 doi: 10.1016/j.ecoenv.2020.111193 |
[11] |
Xue Z, Chen Z, Wang Y, Sun W. 2023. Proteomic analysis reveals the association between the pathways of glutathione and α-Linolenic acid metabolism and Lanthanum accumulation in tea plants. Molecules 28(3):1124 doi: 10.3390/molecules28031124 |
[12] |
Jamla M, Khare T, Joshi S, Patil S, Penna S, et al. 2021. Omics approaches for understanding heavy metal responses and tolerance in plants. Current Plant Biology 27:100213 doi: 10.1016/j.cpb.2021.100213 |
[13] |
Rhaman MS, Imran S, Rauf F, Khatun M, Baskin CC, et al. 2021. Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress. Plants 10(1):37 doi: 10.3390/plants10010037 |
[14] |
Krishnamurthy A, Rathinasabapathi B. 2013. Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana. Plant, Cell & Environment 36(10):1838−49 doi: 10.1111/pce.12093 |
[15] |
Dai H, Wei S, Pogrzeba M, Rusinowski S, Krzyżak J, et al. 2020. Exogenous jasmonic acid decreased Cu accumulation by alfalfa and improved its photosynthetic pigments and antioxidant system. Ecotoxicology and Environmental Safety 190:110176 doi: 10.1016/j.ecoenv.2020.110176 |
[16] |
Kocaman A. 2023. Effects of foliar application of abscisic acid on antioxidant content, phytohormones in strawberry shoots, and translocation of various heavy metals. Scientia Horticulturae 314:111943 doi: 10.1016/j.scienta.2023.111943 |
[17] |
Berka M, Kopecká R, Berková V, Brzobohatý B, Černý M. 2022. Regulation of heat shock proteins 70 and their role in plant immunity. Journal of Experimental Botany 73(7):1894−909 doi: 10.1093/jxb/erab549 |
[18] |
Liu J, Pang X, Cheng Y, Yin Y, Zhang Q, et al. 2018. The Hsp70 gene family in Solanum tuberosum: genome-wide identification, phylogeny, and expression patterns. Scientific Reports 8(1):16628 doi: 10.1038/s41598-018-34878-7 |
[19] |
Liu M, Bian Z, Shao M, Feng Y, Ma W, et al. 2024. Expression analysis of the apple HSP70 gene family in abiotic stress and phytohormones and expression validation of candidate MdHSP70 genes. Scientific Reports 14(1):23975 doi: 10.1038/s41598-024-73368-x |
[20] |
Cho EK, Hong CB. 2006. Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant Cell Reports 25:349−58 doi: 10.1007/s00299-005-0093-2 |
[21] |
Imran Q, Falak N, Hussain A, Mun BG, Yun BW. 2021. Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy 11(8):1579 doi: 10.3390/agronomy11081579 |
[22] |
Shang X, Xu W, Zhang Y, Sun Q, Li Z, et al. 2023. Transcriptome analysis revealed the mechanism of Luciobarbus capito (L. capito) adapting high salinity: antioxidant capacity, heat shock proteins, immunity. Marine Pollution Bulletin 192:115017 doi: 10.1016/j.marpolbul.2023.115017 |
[23] |
Chen L, Li C, Zhang J, Li Z, Zeng Q, et al. 2024. Physiological and transcriptome analyses of Chinese cabbage in response to drought stress. Journal of Integrative Agriculture 23:2255−69 doi: 10.1016/j.jia.2024.03.067 |
[24] |
Li Q, Cai Y, Gu L, Yu X, Wang Y, et al. 2024. Transcriptome reveals molecular mechanism of cabbage response to low temperature stress and functional study of BoPYL8 gene. Scientia Horticulturae 323:112523 doi: 10.1016/j.scienta.2023.112523 |
[25] |
Zu M, Qiu S, Qian Y, Tao J, Zhao D. 2024. Transcriptome sequencing provides insights into high-temperature-induced leaf senescence in herbaceous peony. Agriculture 14(4):574 doi: 10.3390/agriculture14040574 |
[26] |
Chen P, Chen T, Li Z, Jia R, Luo D, et al. 2020. Transcriptome analysis revealed key genes and pathways related to cadmium-stress tolerance in Kenaf (Hibiscus cannabinus L.). Industrial Crops and Products 158:112970 doi: 10.1016/j.indcrop.2020.112970 |
[27] |
Wang C, He M, Shi W, Wong J, Cheng T, et al. 2011. Toxicological effects involved in risk assessment of rare earth lanthanum on roots of Vicia faba L. seedlings. Journal of Environmental Sciences 23(10):1721−28 doi: 10.1016/S1001-0742(10)60598-0 |
[28] |
Grosjean N, Blaudez D, Chalot M, Flayac J, Gross EM, et al. 2024. Rare earth elements perturb root architecture and ion homeostasis in Arabidopsis thaliana. Journal of Hazardous Materials 468:133701 doi: 10.1016/j.jhazmat.2024.133701 |
[29] |
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52 doi: 10.1038/nbt.1883 |
[30] |
Sullivan DK, Min KH, Hjörleifsson KE, Luebbert L, Holley G, et al. 2023. kallisto, bustools, and kb-python for quantifying bulk, single-cell, and single-nucleus RNA-seq. BioRxiv doi: 10.1101/2023.11.21.568164 |
[31] |
Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658−59 doi: 10.1093/bioinformatics/btl158 |
[32] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8 |
[33] |
Yu G, Wang L, Han Y, He Q. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology 16(5):284−87 doi: 10.1089/omi.2011.0118 |
[34] |
Kang S, Guo C, Xue C, Ma C, Mu H, et al. 2022. Toxic effects of two representative rare earth elements (La and Gd) on Danio rerio based on transcriptome analysis. Toxics 10(9):519 doi: 10.3390/toxics10090519 |
[35] |
Wang Y, Nie M, Wang Y, Hu X, Ding W, et al. 2020. Transcriptome analysis of wheat roots in response to heavy metal Pb stress. Journal of Henan Agricultural Sciences 49(6):8−15 doi: 10.15933/j.cnki.1004-3268.2020.06.002 |
[36] |
Kang Y, Yao Y, Liu Y, Shi M, Zhang W, et al. 2023. Exogenous Glutathione enhances tolerance of the potato (Solanum tuberosum L.) to cadmium stress by regulating the biosynthesis of phenylpropanoid and the signal transduction of plant hormones. Chemical and Biological Technologies in Agriculture 10(1):24 doi: 10.1186/s40538-023-00400-z |
[37] |
Zhang S, Bao Q, Huang Y, Han N. 2023. Exogenous plant hormones alleviate As stress by regulating antioxidant defense system in Oryza sativa L. Environmental Science and Pollution Research 30:6454−65 doi: 10.1007/s11356-022-22627-3 |
[38] |
Rahman S, Li Y, Hussain S, Hussain B, Riaz L, et al. 2023. Role of phytohormones in heavy metal tolerance in plants: a review. Ecological Indicators 146:109844 doi: 10.1016/j.ecolind.2022.109844 |
[39] |
Fattorini L, Ronzan M, Piacentini D, Della Rovere F, De Virgilio C, et al. 2017. Cadmium and arsenic affect quiescent centre formation and maintenance in Arabidopsis thaliana post-embryonic roots disrupting auxin biosynthesis and transport. Environmental and Experimental Botany 144:37−48 doi: 10.1016/j.envexpbot.2017.10.005 |
[40] |
Wang R, Wang J, Zhao L, Yang S, Song Y. 2015. Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. BioMetals 28:123−32 doi: 10.1007/s10534-014-9808-6 |
[41] |
Zhang J, Diao F, Hao B, Xu L, Jia B, et al. 2023. Multiomics reveals Claroideoglomus etunicatum regulates plant hormone signal transduction, photosynthesis and La compartmentalization in maize to promote growth under La stress. Ecotoxicology and Environmental Safety 262:115128 doi: 10.1016/j.ecoenv.2023.115128 |
[42] |
Raza A, Charagh S, Zahid Z, Mubarik MS, Javed R, et al. 2021. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Reports 40(8):1513−41 doi: 10.1007/s00299-020-02614-z |
[43] |
Zhao S, Ma Q, Xu X, Li G, Hao L. 2016. Tomato jasmonic acid-deficient mutant spr2 seedling response to cadmium stress. Journal of Plant Growth Regulation 35:603−10 doi: 10.1007/s00344-015-9563-0 |
[44] |
Lei G, Sun L, Sun Y, Zhu X, Li G, et al. 2020. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. Journal of Integrative Plant Biology 62(2):218−27 doi: 10.1111/jipb.12801 |
[45] |
Müller M, Munné-Bosch S. 2021. Hormonal impact on photosynthesis and photoprotection in plants. Plant Physiology 185:1500−22 doi: 10.1093/plphys/kiaa119 |
[46] |
Liu Y, Tao Q, Li J, Guo X, Luo J, et al. 2021. Ethylene-mediated apoplastic barriers development involved in cadmium accumulation in root of hyperaccumulator Sedum alfredii. Journal of Hazardous Materials 403:123729 doi: 10.1016/j.jhazmat.2020.123729 |
[47] |
Hu B, Deng F, Chen G, Chen X, Gao W, et al. 2020. Evolution of abscisic acid signaling for stress responses to toxic metals and metalloids. Frontiers in Plant Science 11:909 doi: 10.3389/fpls.2020.00909 |
[48] |
Wang Y, Xing M, Gao X, Wu M, Liu F, et al. 2023. Physiological and transcriptomic analyses reveal that phytohormone pathways and glutathione metabolism are involved in the arsenite toxicity response in tomatoes. Science of The Total Environment 899:165676 doi: 10.1016/j.scitotenv.2023.165676 |
[49] |
Huang TL, Nguyen QTT, Fu SF, Lin CY, Chen YC, et al. 2012. Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Molecular Biology 80:587−608 doi: 10.1007/s11103-012-9969-z |
[50] |
Yin M, Hu R, Song A, Guan Z, Chen F, et al. 2023. Genome-wide identification and expression analysis of HSP70 gene family in Chrysanthemum lavandulifolium under heat stress. Horticulturae 9(2):238 doi: 10.3390/horticulturae9020238 |
[51] |
Shaheen S, Majeed Z, Mahmood Q. 2023. The assessment of metal resistance through the expression of Hsp-70 and HO-1 proteins in giant reed. International Journal of Plant Biology 14(3):687−700 doi: 10.3390/ijpb14030051 |
[52] |
Jiang C, Bi Y, Zhang R, Feng S. 2020. Expression of RcHSP70, heat shock protein 70 gene from Chinese rose, enhances host resistance to abiotic stresses. Scientific Reports 10(1):2445 doi: 10.1038/s41598-020-58745-6 |
[53] |
Abbas M, Li Y, Elbaiomy RG, Yan K, Ragauskas AJ, et al. 2022. Genome-wide analysis and expression profiling of SlHsp70 gene family in Solanum lycopersicum revealed higher expression of SlHsp70-11 in roots under Cd2+ stress. Frontiers in Bioscience 27(6):186 doi: 10.31083/j.fbl2706186 |