[1] |
Lobell DB, Burke MB. 2010. On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology 150:1443−52 doi: 10.1016/j.agrformet.2010.07.008 |
[2] |
Falkenmark M, Rockström J, Karlberg L. 2009. Present and future water requirements for feeding humanity. Food Security 1:59−69 doi: 10.1007/s12571-008-0003-x |
[3] |
Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature 529:84−87 doi: 10.1038/nature16467 |
[4] |
Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ. 2011. Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends in Plant Science 16:363−71 doi: 10.1016/j.tplants.2011.03.004 |
[5] |
Wang Z, Großkinsky DK, Li D, Zheng W. 2024. Editorial: physiological and molecular mechanisms of important agronomic traits in plants under various abiotic factors. Frontiers in Plant Science 15:1502061 doi: 10.3389/fpls.2024.1502061 |
[6] |
Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, et al. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10:259 doi: 10.3390/plants10020259 |
[7] |
Goche T, Shargie NG, Cummins I, Brown AP, Chivasa S, et al. 2020. Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Scientific Reports 10:11835 doi: 10.1038/s41598-020-68735-3 |
[8] |
Quan R, Shang M, Zhang H, Zhao Y, Zhang J. 2004. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal 2:477−86 doi: 10.1111/j.1467-7652.2004.00093.x |
[9] |
Wu S, Tian J, Ren T, Wang Y. 2022. Osmotic adjustment and antioxidant system regulated by nitrogen deposition improve photosynthetic and growth performance and alleviate oxidative damage in dwarf bamboo under drought stress. Frontiers in Plant Science 13:819071 doi: 10.3389/fpls.2022.819071 |
[10] |
Iqbal S, Wang X, Mubeen I, Kamran M, Kanwal I, et al. 2021. Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Frontiers in Plant Science 12:799318 doi: 10.3389/fpls.2021.799318 |
[11] |
Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, et al. 2022. Mechanisms of abscisic acid-mediated drought stress responses in plants. International Journal of Molecular Sciences 23:1084 doi: 10.3390/ijms23031084 |
[12] |
Fidler J, Graska J, Gietler M, Nykiel M, Prabucka B, et al. 2022. PYR/PYL/RCAR receptors play a vital role in the abscisic-acid-dependent responses of plants to external or internal stimuli. Cells 11:1352 doi: 10.3390/cells11081352 |
[13] |
Hrmova M, Hussain SS. 2021. Plant transcription factors involved in drought and associated stresses. International Journal of Molecular Sciences 22:5662 doi: 10.3390/ijms22115662 |
[14] |
Mockevičiūtė R, Jurkonienė S, Šveikauskas V, Zareyan M, Jankovska-Bortkevič E, et al. 2023. Probiotics, proline and calcium induced protective responses of Triticum aestivum under drought stress. Plants 12:1301 doi: 10.3390/plants12061301 |
[15] |
Jurkonienė S, Mockevičiūtė R, Gavelienė V, Šveikauskas V, Zareyan M, et al. 2023. Proline enhances resistance and recovery of oilseed rape after a simulated prolonged drought. Plants 12:2718 doi: 10.3390/plants12142718 |
[16] |
Liang Y, Kang K, Gan L, Ning S, Xiong J, et al. 2019. Drought-responsive genes, late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. Plant Biotechnology Journal 17:2123−42 doi: 10.1111/pbi.13127 |
[17] |
Ibrahim EA, Ebrahim NES, Mohamed GZ. 2023. Effect of water stress and foliar application of chitosan and glycine betaine on lettuce. Scientific Reports 13:17274 doi: 10.1038/s41598-023-43992-0 |
[18] |
Jiang J, Guo Z, Sun X, Jiang Y, Xie F, et al. 2023. Role of proline in regulating turfgrass tolerance to abiotic stress. Grass Research 3:2−7 doi: 10.48130/GR-2023-0002 |
[19] |
Giri J. 2011. Glycinebetaine and abiotic stress tolerance in plants. Plant Signaling & Behavior 6:1746−51 doi: 10.4161/psb.6.11.17801 |
[20] |
Ashraf M, Foolad MR. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59:206−16 doi: 10.1016/j.envexpbot.2005.12.006 |
[21] |
Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, et al. 2015. Cell wall metabolism in response to abiotic stress. Plants 4:112−66 doi: 10.3390/plants4010112 |
[22] |
Liu X, Chen A, Wang Y, Jin G, Zhang Y, et al. 2022. Physiological and transcriptomic insights into adaptive responses of Seriphidium transiliense seedlings to drought stress. Environmental and Experimental Botany 194:104736 doi: 10.1016/j.envexpbot.2021.104736 |
[23] |
Tan M, Ling Y, Peng Y, Li Z. 2022. Evaluation of genetic diversity and drought tolerance among thirty-three dichondra (Dichondra repens) genotypes. Grass Research 2:8 doi: 10.48130/GR-2022-0008 |
[24] |
Gorim LY, Vandenberg A. 2017. Evaluation of wild lentil species as genetic resources to improve drought tolerance in cultivated lentil. Frontiers in Plant Science 8:1129 doi: 10.3389/fpls.2017.01129 |
[25] |
von Wettberg EJB, Chang PL, Basdemir F, Carrasquila-Garcia N, Korbu LB, et al. 2018. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nature Communications 9:649 doi: 10.1038/s41467-018-02867-z |
[26] |
Ye H, Roorkiwal M, Valliyodan B, Zhou L, Chen P, et al. 2018. Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany 69:3267−77 doi: 10.1093/jxb/ery082 |
[27] |
Vinson CC, Mota APZ, Oliveira TN, Guimaraes LA, Leal-Bertioli SCM, et al. 2018. Early responses to dehydration in contrasting wild Arachis species. PLoS One 13:e0198191 doi: 10.1371/journal.pone.0198191 |
[28] |
Thuc LV, Do HQ, Minh VQ. 2023. Effects of drought and salinity on growth, yield and nutritional contents of cowpea bean (Vigna marina). Legume Research 46:353−58 doi: 10.18805/lrf-716 |
[29] |
Delgado-Salinas A, Thulin M, Pasquet R, Weeden N, Lavin M. 2011. Vigna (Leguminosae) sensu lato: the names and identities of the American segregate genera. American Journal of Botany 98:1694−715 doi: 10.3732/ajb.1100069 |
[30] |
Singh AK, Velmurugan A, Gupta DS, Kumar J, Kesari R, et al. 2019. Draft genome sequence of a less-known wild Vigna: Beach pea (V. marina cv. ANBp-14-03). The Crop Journal 7:660−66 doi: 10.1016/j.cj.2019.05.007 |
[31] |
Smith JMB. 1991. Tropical drift disseminules on Southeast Australian beaches. Australian Geographical Studies 29:355−69 doi: 10.1111/j.1467-8470.1991.tb00725.x |
[32] |
Elanchezhian R, Rajalakshmi S, Jayakumar V. 2009. Salt tolerance characteristics of rhizobium species associated with Vigna marina. Indian Journal of Agricultural Sciences 79(12):980−85 |
[33] |
Chankaew S, Isemura T, Naito K, Ogiso-Tanaka E, Tomooka N, et al. 2014. QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga, a halophytic species. Theoretical and Applied Genetics 127:691−702 doi: 10.1007/s00122-013-2251-1 |
[34] |
Prasad PVV, Pisipati SR, Momčilović I, Ristic Z. 2011. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. Journal of Agronomy and Crop Science 197:430−41 doi: 10.1111/j.1439-037X.2011.00477.x |
[35] |
Liu YJ, Zhang W, Wang ZB, Ma L, Guo YP, et al. 2019. Influence of shading on photosynthesis and antioxidative activities of enzymes in apple trees. Photosynthetica 57:857−65 doi: 10.32615/ps.2019.081 |
[36] |
Li GW, Zhang MH, Cai WM, Sun WN, Su WA. 2008. Characterization of OsPIP2;7, a water channel protein in rice. Plant and Cell Physiology 49:1851−58 doi: 10.1093/pcp/pcn166 |
[37] |
Davey MW, Stals E, Panis B, Keulemans J, Swennen RL. 2005. High-throughput determination of malondialdehyde in plant tissues. Analytical Biochemistry 347:201−07 doi: 10.1016/j.ab.2005.09.041 |
[38] |
Comas LH, Eissenstat DM, Lakso AN. 2000. Assessing root death and root system dynamics in a study of grape canopy pruning. New Phytologist 147:171−78 doi: 10.1046/j.1469-8137.2000.00679.x |
[39] |
Chow PS, Landhäusser SM. 2004. A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiology 24:1129−36 doi: 10.1093/treephys/24.10.1129 |
[40] |
Deans CA, Sword GA, Lenhart PA, Burkness E, Hutchison WD, et al. 2018. Quantifying plant soluble protein and digestible carbohydrate content, using corn (Zea mays) as an exemplar. Journal of Visualized Experiments 138:e58164 doi: 10.3791/58164 |
[41] |
Abrahám E, Hourton-Cabassa C, Erdei L, Szabados L. 2010. Methods for determination of proline in plants. In Plant Stress Tolerance, ed. Sunkar R. US: Humana Press. Vol 639. pp. 317−31. doi: 10.1007/978-1-60761-702-0_20 |
[42] |
Wang ZB, Wang YF, Zhao JJ, Ma L, Wang YJ, et al. 2018. Effects of GeO2 on chlorophyll fluorescence and antioxidant enzymes in apple leaves under strong light. Photosynthetica 56:1081−92 doi: 10.1007/s11099-018-0807-7 |
[43] |
Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. Boston: ScienceOpen, Inc. |
[44] |
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20 doi: 10.1093/bioinformatics/btu170 |
[45] |
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15−21 doi: 10.1093/bioinformatics/bts635 |
[46] |
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33:290−95 doi: 10.1038/nbt.3122 |
[47] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8 |
[48] |
Zhu A, Ibrahim JG, Love MI. 2019. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35:2084−92 doi: 10.1093/bioinformatics/bty895 |
[49] |
Jones P, Binns D, Chang HY, Fraser M, Li W, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236−40 doi: 10.1093/bioinformatics/btu031 |
[50] |
Wu T, Hu E, Xu S, Chen M, Guo P, et al. 2021. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. The Innovation 2:100141 doi: 10.1016/j.xinn.2021.100141 |
[51] |
Pham-Gia T, Hung TL. 2001. The mean and median absolute deviations. Mathematical and Computer Modelling 34:921−36 doi: 10.1016/S0895-7177(01)00109-1 |
[52] |
Carvalho M, Lino-Neto T, Rosa E, Carnide V. 2017. Cowpea: a legume crop for a challenging environment. Journal of the Science of Food and Agriculture 97:4273−84 doi: 10.1002/jsfa.8250 |
[53] |
Shoaib M, Banerjee BP, Hayden M, Kant S. 2022. Roots' drought adaptive traits in crop improvement. Plants 11:2256 doi: 10.3390/plants11172256 |
[54] |
Chaves MM, Maroco JP, Pereira JS. 2003. Understanding plant responses to drought - from genes to the whole plant. Functional Plant Biology 30:239−64 doi: 10.1071/FP02076 |
[55] |
Ruf M, Brunner I. 2003. Vitality of tree fine roots: reevaluation of the tetrazolium test. Tree Physiology 23:257−63 doi: 10.1093/treephys/23.4.257 |
[56] |
Rathinasabapathi B. 2000. Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Annals of Botany 86:709−16 doi: 10.1006/anbo.2000.1254 |
[57] |
Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ. 2019. The role of the plant antioxidant system in drought tolerance. Antioxidants 8:94 doi: 10.3390/antiox8040094 |
[58] |
Hu F, Zhang Y, Guo J. 2023. Effects of drought stress on photosynthetic physiological characteristics, leaf microstructure, and related gene expression of yellow horn. Plant Signaling & Behavior 18:2215025 doi: 10.1080/15592324.2023.2215025 |
[59] |
Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science 4(8):580−85 doi: 10.3316/INFORMIT.857341254680658 |
[60] |
Schansker G, Tóth SZ, Strasser RJ. 2005. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1706:250−61 doi: 10.1016/j.bbabio.2004.11.006 |
[61] |
Stirbet A, Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology 104:236−57 doi: 10.1016/j.jphotobiol.2010.12.010 |
[62] |
Lee I, Ambaru B, Thakkar P, Marcotte EM, Rhee SY. 2010. Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nature Biotechnology 28:149−56 doi: 10.1038/nbt.1603 |
[63] |
Liu T, Longhurst AD, Talavera-Rauh F, Hokin SA, Barton MK. 2016. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence. eLife 5:e13768 doi: 10.7554/eLife.13768 |
[64] |
Rolly NK, Mun BG, Yun BW. 2021. Insights into the transcriptional regulation of branching hormonal signaling pathways genes under drought stress in Arabidopsis. Genes 12:298 doi: 10.3390/genes12020298 |
[65] |
Gong L, Zhang H, Liu X, Gan X, Nie F, et al. 2020. Ectopic expression of HaNAC1, an ATAF transcription factor from Haloxylon ammodendron, improves growth and drought tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry 151:535−44 doi: 10.1016/j.plaphy.2020.04.008 |
[66] |
Grundy J, Stoker C, Carré IA. 2015. Circadian regulation of abiotic stress tolerance in plants. Frontiers in Plant Science 6:648 doi: 10.3389/fpls.2015.00648 |
[67] |
Guo Y, Xiong L, Song CP, Gong D, Halfter U, et al. 2002. A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Developmental Cell 3:233−44 doi: 10.1016/S1534-5807(02)00229-0 |
[68] |
Iurlaro A, De Caroli M, Sabella E, De Pascali M, Rampino P, et al. 2016. Drought and heat differentially affect XTH expression and XET activity and action in 3-day-old seedlings of durum wheat cultivars with different stress susceptibility. Frontiers in Plant Science 7:1686 doi: 10.3389/fpls.2016.01686 |
[69] |
Abbasi T, Abbasi SA. 2010. Biomass energy and the environmental impacts associated with its production and utilization. Renewable snd Sustainable Energy Reviews 14:919−37 doi: 10.1016/j.rser.2009.11.006 |
[70] |
Brodersen CR, Roddy AB, Wason JW, McElrone AJ. 2019. Functional Status of Xylem Through Time. Annual Review of Plant Biology 70:407−33 doi: 10.1146/annurev-arplant-050718-100455 |
[71] |
O'Connell E. 2017. Towards adaptation of water resource systems to climatic and socio-economic change. Water Resources Management 31:2965−84 doi: 10.1007/s11269-017-1734-2 |
[72] |
Hall AE. 2004. Breeding for adaptation to drought and heat in cowpea. European Journal of Agronomy 21:447−54 doi: 10.1016/j.eja.2004.07.005 |
[73] |
Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 29:185−212 doi: 10.1051/agro:2008021 |
[74] |
Fang Y, Xiong L. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences 72:673−89 doi: 10.1007/s00018-014-1767-0 |
[75] |
Caradus JR, Woodfield DR. 1998. Genetic control of adaptive root characteristics in white clover. Plant and Soil 200:63−69 doi: 10.1023/A:1004296707631 |
[76] |
Seki M, Umezawa T, Urano K, Shinozaki K. 2007. Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology 10:296−302 doi: 10.1016/j.pbi.2007.04.014 |
[77] |
He FL, Bao AK, Wang SM, Jin HX. 2019. NaCl stimulates growth and alleviates drought stress in the salt-secreting xerophyte. Environmental and Experimental Botany 162:433−43 doi: 10.1016/j.envexpbot.2019.03.014 |
[78] |
Lü XP, Gao HJ, Zhang L, Wang YP, Shao KZ, et al. 2019. Dynamic responses of Haloxylon ammodendron to various degrees of simulated drought stress. Plant Physiology and Biochemistry 139:121−31 doi: 10.1016/j.plaphy.2019.03.019 |
[79] |
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33:453−67 doi: 10.1111/j.1365-3040.2009.02041.x |
[80] |
Torres MA, Dangl JL. 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology 8:397−403 doi: 10.1016/j.pbi.2005.05.014 |
[81] |
Yoshida T, Mogami J, Yamaguchi-Shinozaki K. 2014. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology 21:133−39 doi: 10.1016/j.pbi.2014.07.009 |
[82] |
Verma V, Ravindran P, Kumar PP. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology 16:86 doi: 10.1186/s12870-016-0771-y |
[83] |
Wang Z, Li G, Sun H, Ma L, Guo Y, et al. 2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open 7:bio035279 doi: 10.1242/bio.035279 |
[84] |
Takahashi S, Murata N. 2008. How do environmental stresses accelerate photoinhibition? Trends in Plant Science 13:178−82 doi: 10.1016/j.tplants.2008.01.005 |
[85] |
Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30 doi: 10.1016/j.plaphy.2010.08.016 |
[86] |
Andrés Z, Pérez-Hormaeche J, Leidi EO, Schlücking K, Steinhorst L, et al. 2014. Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proceedings of the National Academy of Sciences of the United States of America 111:E1806−E1814 doi: 10.1073/pnas.1320421111 |
[87] |
Ahmed NU, Park JI, Jung HJ, Kang KK, Hur Y, et al. 2012. Molecular characterization of stress resistance-related chitinase genes of Brassica rapa. Plant Physiology and Biochemistry 58:106−15 doi: 10.1016/j.plaphy.2012.06.015 |
[88] |
Lv P, Zhang C, Xie P, Yang X, El-Sheikh MA, et al. 2022. Genome-Wide Identification and Expression Analyses of the Chitinase Gene Family in Response to White Mold and Drought Stress in Soybean (Glycine max). Life 12:1340 doi: 10.3390/life12091340 |
[89] |
Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants 25:313−26 doi: 10.1007/s12298-018-0633-1 |
[90] |
Preciado J, Begcy K, Liu T. 2022. The Arabidopsis HDZIP class II transcription factor ABA INSENSITIVE TO GROWTH 1 functions in leaf development. Journal of Experimental Botany 73:1978−91 doi: 10.1093/jxb/erab523 |
[91] |
Chen Z, Liu Y, Yin Y, Liu Q, Li N, et al. 2019. Expression of AtGA2ox1 enhances drought tolerance in maize. Plant Growth Regulation 89:203−15 doi: 10.1007/s10725-019-00526-x |
[92] |
Duan M, Zhang R, Zhu F, Zhang Z, Gou L, et al. 2017. A lipid-anchored NAC transcription factor is translocated into the nucleus and activates Glyoxalase I expression during drought stress. The Plant Cell 29:1748−72 doi: 10.1105/tpc.17.00044 |
[93] |
Mahmood K, El-Kereamy A, Kim SH, Nambara E, Rothstein SJ. 2016. ANAC032 positively regulates age-dependent and stress-induced senescence in Arabidopsis thaliana. Plant and Cell Physiology 57:2029−46 doi: 10.1093/pcp/pcw120 |
[94] |
Chu CC, Lee WC, Guo WY, Pan SM, Chen LJ, et al. 2005. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiology 139:425−36 doi: 10.1104/pp.105.065284 |