[1] |
Li S, Huang S, Xu F, Zhao T, Zhang F, et al. 2020. Imparting superhydrophobicity and flame retardancy simultaneously on cotton fabrics. Cellulose 27(7):3989−4005 doi: 10.1007/s10570-020-03041-9 |
[2] |
Chen C, Luan J, Lan F, Ji G, Yin X, et al. 2024. Construction and application of B/P/N durable flame retardant crosslinking system on cotton fabric. Industrial Crops and Products 222:119623 doi: 10.1016/j.indcrop.2024.119623 |
[3] |
Qin H, Li X, Zhang X, Guo Z. 2019. Preparation and performance testing of superhydrophobic flame retardant cotton fabric. New Journal of Chemistry 43(15):5839−48 doi: 10.1039/C9NJ00307J |
[4] |
Accident Investigation Team of Wuxi Municipal People's Government. 2024. Accident investigation report of Wuxi Tiantianrun Textile Technology Co., Ltd. "11·20" major fire accident. www.fire114.cn/index/slibrary/detail/i/127622.html (Accessed on 11 Jan. 2025 |
[5] |
Ren Y, Gu Y, Zeng Q, Zhang Y. 2017. UV-induced surface grafting polymerization for preparing phosphorus-containing flame retardant polyacrylonitrile fabric. European Polymer Journal 94:1−10 doi: 10.1016/j.eurpolymj.2017.06.037 |
[6] |
Wang D, Zhong L, Zhang C, Zhang F, Zhang G. 2018. A novel reactive phosphorous flame retardant for cotton fabrics with durable flame retardancy and high whiteness due to self-buffering. Cellulose 25(10):5479−97 doi: 10.1007/s10570-018-1964-3 |
[7] |
Sykam K, Försth M, Sas G, Restás Á, Das O. 2021. Phytic acid: A bio-based flame retardant for cotton and wool fabrics. Industrial Crops and Products 164:113349 doi: 10.1016/j.indcrop.2021.113349 |
[8] |
Nguyen Thi H, Hong KVT, Ha TN, Phan DN. 2020. Application of plasma activation in flame-retardant treatment for cotton fabric. Polymers 12(7):1575 doi: 10.3390/polym12071575 |
[9] |
Song WM, Zhang LY, Li P, Liu Y. 2023. High-efficient flame-retardant finishing of cotton fabrics based on phytic acid. International Journal of Molecular Sciences 24(2):1093 doi: 10.3390/ijms24021093 |
[10] |
Alongi J, Carosio F, Malucelli G. 2014. Current emerging techniques to impart flame retardancy to fabrics: an overview. Polymer Degradation and Stability 106:138−49 doi: 10.1016/j.polymdegradstab.2013.07.012 |
[11] |
Liu Y, Ding D, Lu Y, Chen Y, Liao Y, et al. 2022. Efficient and durable cotton fabric surface modification via flame retardant treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects 648:129005 doi: 10.1016/j.colsurfa.2022.129005 |
[12] |
Zhou S, Yang Y, Zhu Z, Xie Z, Sun X, et al. 2021. Preparation of a halogen-free flame retardant and its effect on the poly(L-lactic acid) as the flame retardant material. Polymer 229:124027 doi: 10.1016/j.polymer.2021.124027 |
[13] |
Tan W, Ren Y, Xiao M, Guo Y, Liu Y, et al. 2021. Enhancing the flame retardancy of lyocell fabric finished with an efficient, halogen-free flame retardant. RSC Advances 11(55):34926−37 doi: 10.1039/D1RA06573D |
[14] |
Mata MC, Castro V, Quintana JB, Rodil R, Beiras R, et al. 2022. Bioaccumulation of organophosphorus flame retardants in the marine mussel Mytilus galloprovincialis. Science of The Total Environment 805:150384 doi: 10.1016/j.scitotenv.2021.150384 |
[15] |
Feng Y, Zhou Y, Li D, He S, Zhang F, et al. 2017. A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric. Carbohydrate polymers 175:636−44 doi: 10.1016/j.carbpol.2017.06.129 |
[16] |
Luo Q, Wang M, Zhang H, Ouyang Y, Lin H, et al. 2021. Preparation and properties of bio-based flame retardant L-APP/poly(L-lactic acid) composites. Journal of Renewable Materials 9(12):2067 doi: 10.32604/jrm.2021.016255 |
[17] |
Kumar M, Barbhai MD. 2023. Sustainable fire safety solutions: bioactive natural polysaccharides and secondary metabolites as innovative fire retardants for textiles. Emergency Management Science and Technology 3:17 doi: 10.48130/emst-2023-0017 |
[18] |
Liu X, Zhang Q, Peng B, Ren Y, Cheng B, et al. 2020. Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid. Journal of Cleaner Production 243:118641 doi: 10.1016/j.jclepro.2019.118641 |
[19] |
Xu Y, Zhang W, Qiu Y, Xu M, Li B, et al. 2022. Preparation and mechanism study of a high efficiency bio-based flame retardant for simultaneously enhancing flame retardancy, toughness and crystallization rate of poly (lactic acid). Composites Part B: Engineering 238:109913 doi: 10.1016/j.compositesb.2022.109913 |
[20] |
Malucelli G. 2020. Flame-retardant systems based on chitosan and its derivatives: State of the art and perspectives. Molecules 25(18):4046 doi: 10.3390/molecules25184046 |
[21] |
Alongi J, Carletto RA, Di Blasio A, Carosio F, Bosco F, et al. 2023. DNA: a novel, green, natural flame retardant and suppressant for cotton. Journal of Materials Chemistry A 1(15):4779−85 doi: 10.1039/C3TA00107E |
[22] |
Wang TC, Jia MH, Xu NT, Hu W, Jiang Z, et al. 2024. Facile fabrication of adenosine triphosphate/chitosan/polyethyleneimine coating for high flame-retardant lyocell fabrics with outstanding antibacteria. International Journal of Biological Macromolecules 260:129599 doi: 10.1016/j.ijbiomac.2024.129599 |
[23] |
Sun J, Pang Y, Yang Y, Zhao J, Xia R, et al. 2019. Improvement of rice husk/HDPE bio-composites interfacial properties by silane coupling agent and compatibilizer complementary modification. Polymers 11(12):1928 doi: 10.3390/polym11121928 |
[24] |
China National Textile And Apparel Council. 1997. GB/T 5454-1997: Textiles-Burning behaviour-Oxygen index method. Beijing: Standards Press of China |
[25] |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2014. GB/T 5455-2014: Textiles-Burning behaviour-Determination of damaged length, afterglow time and afterflame time of vertically oriented specimens. Beijing: Standards Press of China |
[26] |
International Organization for Standardization. 2015. ISO 5660-1: 2015. Reaction to fire tests-Heat release, smoke production and mass loss rate. Geneva: International Organization for Standardization |
[27] |
Li G, You F, Zhou S, Wang Z, Li D, et al. 2022. Preparations, characterizations, thermal and flame retardant properties of cotton fabrics finished by boron-silica sol-gel coatings. Polymer Degradation and Stability 202:110011 doi: 10.1016/j.polymdegradstab.2022.110011 |
[28] |
Yu J, Pang Z, Zheng C, Zhou T, Zhang J, et al. 2019. Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity. Applied Surface Science 470:84−90 doi: 10.1016/j.apsusc.2018.11.112 |
[29] |
Zhang X, Wang Z, Zhou S, You F, Li D, et al. 2022. Enhanced flame retardancy level of a cotton fabric treated by an ammonium pentaborate doped silica-KH570 sol. Journal of Industrial Textiles 52:1−29 doi: 10.1177/15280837221116590 |
[30] |
Lin D, Zeng X, Li H, Lai X, Wu T. 2019. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction. Journal of colloid and interface science 533:198−206 |
[31] |
Zhang QH, Gu J, Chen GQ, Xing TL. 2016. Durable flame retardant finish for silk fabric using boron hybrid silica sol. Applied Surface Science 387(30):446−53 doi: 10.1016/j.jcis.2018.08.060 |
[32] |
Naik AD, Fontaine G, Samyn F, Delva X, Bourgeois Y, et al. 2013. Melamine integrated metal phosphates as non-halogenated flame retardants: synergism with aluminium phosphinate for flame retardancy in glass fiber reinforced polyamide 66. Polymer Degradation and Stability 98:2653−62 doi: 10.1016/j.polymdegradstab.2013.09.029 |
[33] |
Zhang L, Li X, Zhang S, Gao Q, Lu Q, et al. 2021. Micro-FTIR combined with curve fitting method to study cellulose crystallinity of developing cotton fibers. Analytical and Bioanalytical Chemistry 413:1313−20 doi: 10.1007/s00216-020-03094-6 |
[34] |
Yuan H, Xing W, Zhang P, Song L, Hu Y. 2012. Functionalization of cotton with UV-cured flame retardant coatings. Industrial & Engineering Chemistry Research 51(15):5394−401 doi: 10.1021/ie202468u |
[35] |
Liu Y, Pan YT, Wang X, Acuña P, Zhu P, et al. 2016. Effect of phosphorus-containing inorganic-organic hybrid coating on the flammability of cotton fabrics: Synthesis, characterization and flammability. Chemical Engineering Journal 294:167−75 doi: 10.1016/j.cej.2016.02.080 |
[36] |
Zhou L, Liang Z, Li R, Huang D, Ren X. 2017. Flame-retardant treatment of cotton fabric with organophosphorus derivative containing nitrogen and silicon. Journal of Thermal Analysis and Calorimetry 128(2):653−60 doi: 10.1007/s10973-016-5949-x |
[37] |
Ahmad I, Kan CW, Yao Z. 2019. Photoactive cotton fabric for UV protection and self-cleaning. RSC advances 9(32):18106−14 doi: 10.1039/C9RA02023C |
[38] |
Ren Y, Huo T, Qin Y, Liu X. 2018. Preparation of flame retardant polyacrylonitrile fabric based on sol-gel and layer-by-layer assembly. Materials, 2018,11(4):483 doi: 10.3390/ma11040483 |
[39] |
Akiyama Y, Sodaye H, Shibahara Y, Honda Y, Tagawa S, et al. 2010. Study on gamma-ray-induced degradation of polymer electrolyte by pH titration and solution analysis. Polymer Degradation and Stability 95:1−5 doi: 10.1016/j.polymdegradstab.2009.11.002 |
[40] |
Gao D, Zhang Y, Lyu B, Wang P, Ma J. 2019. Nanocomposite based on poly (acrylic acid)/attapulgite towards flame retardant of cotton fabrics. Carbohydrate polymers 206:245−53 doi: 10.1016/j.carbpol.2018.10.113 |
[41] |
Zhang Q, Huang NH, Xu YC. 2008. Study on the thermal degradation kinetics of cotton fiber. Journal of Textile Research 29(2):15−19 doi: 10.3321/j.issn:0253-9721.2008.02.004 |
[42] |
Liu M, Huang S, Zhang G, Zhang F. 2019. Synthesis of P–N–Si synergistic flame retardant based on a cyclodiphosphazane derivative for use on cotton fabric. Cellulose 26(12):7553−67 doi: 10.1007/s10570-019-02608-5 |
[43] |
Cheng F, Zhang X, Yang X, Li R, Wu Y. 2021. Research on carbonization kinetic of cellulose-based materials and its application. Journal of Analytical and Applied Pyrolysis 158:105232 doi: 10.1016/j.jaap.2021.105232 |
[44] |
Bourbigot S, Le Bras M, Delobel R. 1995. Fire degradation of an intumescent flame retardant polypropylene using the cone calorimeter. Journal of fire sciences 13(1):3−22 doi: 10.1177/073490419501300101 |