[1]

Kohli D, Champawat PS, Mudgal VD. 2023. Asparagus (Asparagus racemosus L.) roots: nutritional profile, medicinal profile, preservation, and value addition. Journal of the Science of Food and Agriculture 103:2239−50

doi: 10.1002/jsfa.12358
[2]

Viera-Alcaide I, Hamdi A, Guillén-Bejarano R, Rodríguez-Arcos R, Espejo-Calvo JA, et al. 2022. Asparagus roots: from an agricultural by-product to a valuable source of fructans. Foods 11:652

doi: 10.3390/foods11050652
[3]

Chinese Pharmacopeia Commission. 2020. Pharmacopoeia of People's Republic of China, Part 1. Beijing: Chemical Industry Press. pp. 56–57

[4]

Lee HJ, Park JS, Yoon YP, Shin YJ, Lee SK, et al. 2015. Dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis suppressed the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor. Phytomedicine 22:568−572

doi: 10.1016/j.phymed.2015.03.009
[5]

Sheng W. 2022. The entire chloroplast genome sequence of Asparagus cochinchinensis and genetic comparison to Asparagus species. Open Life Sciences 17:893−906

doi: 10.1515/biol-2022-0098
[6]

Wang M, Wang S, Hu W, Wang Z, Yang B, et. al. 2022. Asparagus cochinchinensis: a review of its botany, traditional uses, phytochemistry, pharmacology, and applications. Frontiers in Pharmacology 13:1068858

doi: 10.3389/fphar.2022.1068858
[7]

Yu J, Zheng Y, Song C, Chen S. 2024. New insights into the roles of fungi and bacteria in the development of medicinal plant. Journal of Advanced Research 65:137−152

doi: 10.1016/j.jare.2023.12.007
[8]

Qu P, Wang B, Qi M, Lin R, Chen H, et al. 2024. Medicinal plant root exudate metabolites shape the rhizosphere microbiota. International Journal of Molecular Sciences 25:7786

doi: 10.3390/ijms25147786
[9]

Steinberger Y, Doniger T, Sherman C, Jeyaraman M, Applebaum I. 2024. Soil bacterial community of medicinal plant rhizosphere in a Mediterranean system. Agriculture 14:664

doi: 10.3390/agriculture14050664
[10]

Liu S, Gao J, Wang S, Li W, Wang, A. 2023. Community differentiation of rhizosphere microorganisms and their responses to environmental factors at different development stages of medicinal plant Glehnia littoralis. PeerJ 11:e14988

doi: 10.7717/peerj.14988
[11]

Wang M, Deng J, Duan G, Chen L, Huang X, et al. 2023. Insights into the impacts of autotoxic allelochemicals from rhizosphere of Atractylodes lancea on soil microenvironments. Frontiers in Plant Science 14:1136833

doi: 10.3389/fpls.2023.1136833
[12]

Zhu H, Mo Z, Wang Y, Su J. 2024. The accumulation of polysaccharides in Dendrobium officinale is closely related to rhizosphere bacteria. International Microbiology

doi: 10.1007/s10123-024-00592-w
[13]

Ng CWW, Yan WH, Xia YT, Tsim KWK, To JCT. 2024. Plant growth-promoting rhizobacteria enhance active ingredient accumulation in medicinal plants at elevated CO2 and are associated with indigenous microbiome. Frontiers in Microbiology 15:1426893

doi: 10.3389/fmicb.2024.1426893
[14]

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890

doi: 10.1093/bioinformatics/bty560
[15]

Davis EM, Sun Y, Liu Y, Kolekar P, Shao Y, et al. 2021. SequencErr: measuring and suppressing sequencer errors in next-generation sequencing data. Genome Biology 22:37

doi: 10.1186/s13059-020-02254-2
[16]

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52

doi: 10.1038/nbt.1883
[17]

Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150−52

doi: 10.1093/bioinformatics/bts565
[18]

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12:59−60

doi: 10.1038/nmeth.3176
[19]

Prakash A, Jeffryes M, Bateman A, Finn RD. 2017. The HMMER web server for protein sequence similarity search. Current Protocols in Bioinformatics 60:3.15.1−3.15.23

doi: 10.1002/cpbi.40
[20]

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, et al. 2021. Pfam: The protein families database in 2021. Nucleic Acids Research 49:D412−D419

doi: 10.1093/nar/gkaa913
[21]

The UniProt Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Research 43:D204−D212

doi: 10.1093/nar/gku989
[22]

Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28:27−30

doi: 10.1093/nar/28.1.27
[23]

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics 25:25−29

doi: 10.1038/75556
[24]

Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

doi: 10.1186/1471-2105-4-41
[25]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[26]

Yu G, Wang LG, Han Y, He QY. 2012. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284−87

doi: 10.1089/omi.2011.0118
[27]

Li Y, Liu Y, Zhang H, Yang Y, Wei G, et al. 2021. The composition of root-associated bacteria and fungi of Astragalus mongholicus and their relationship with the bioactive ingredients. Frontiers in Microbiology 12:642730

doi: 10.3389/fmicb.2021.642730
[28]

Li M, Chen Z, Qian J, Wei F, Zhang G, et al. 2020. Composition and function of rhizosphere microbiome of Panax notoginseng with discrepant yields. Chinese Medicine 15:85

doi: 10.1186/s13020-020-00364-4
[29]

Zuo J, Zu M, Liu L, Song X, Yuan Y. 2021. Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium. BMC Plant Biology 21:127

doi: 10.1186/s12870-021-02893-y
[30]

Zhang J, Liu P, Nie B, Liu X, Zhang Z, et al. 2022. Effects of genotype and ecological environment on the community structure and function of symbiotic bacteria in rhizosphere of ginseng. BMC Microbiology 22:235

doi: 10.1186/s12866-022-02649-0
[31]

Jiao G, Huang Y, Dai H, Gou H, Li Z, et al. 2023. Responses of rhizosphere microbial community structure and metabolic function to heavy metal coinhibition. Environmental Geochemistry and Health 45:6177−98

doi: 10.1007/s10653-023-01626-4
[32]

Liu Y, Yan Y, Fu L, Li X. 2023. Metagenomic insights into the response of rhizosphere microbial to precipitation changes in the alpine grasslands of northern Tibet. Science of The Total Environment 892:164212

doi: 10.1016/j.scitotenv.2023.164212
[33]

De Francisco Martínez P, Morgante V, González-Pastor JE. 2022. Isolation of novel cold-tolerance genes from rhizosphere microorganisms of Antarctic plants by functional metagenomics. Frontiers in Microbiology 13:1026463

doi: 10.3389/fmicb.2022.1026463
[34]

Feng WM, Liu P, Yan H, Zhang S, Shang EX, et al. 2021. Impact of Bacillus on phthalides accumulation in Angelica sinensis (Oliv.) by stoichiometry and microbial diversity analysis. Frontiers in Microbiology 11:611143

doi: 10.3389/fmicb.2020.611143
[35]

Guo Y, Zhang D, Qi W. 2023. Bacterial diversity of herbal rhizospheric soils in Ordos desert steppes under different degradation gradients. PeerJ 11:e16289

doi: 10.7717/peerj.16289
[36]

Świątczak J, Kalwasińska A, Szabó A, Swiontek Brzezinska M. 2023. Pseudomonas sivasensis 2RO45 inoculation alters the taxonomic structure and functioning of the canola rhizosphere microbial community. Frontiers in Microbiology 14:1168907

doi: 10.3389/fmicb.2023.1168907
[37]

Wang Y, Yang Y, Li C, Liu Y, Fan S, et al. 2024. Analysis of lignan content and rhizosphere microbial diversity of Schisandra chinensis (Turcz.) Baill. resources. Life 14:946

doi: 10.3390/life14080946
[38]

Xu D, Ling J, Qiao F, Xi P, Zeng Y, et al. 2022. Organic mulch can suppress litchi downy blight through modification of soil microbial community structure and functional potentials. BMC Microbiology 22:155

doi: 10.1186/s12866-022-02492-3
[39]

Lyu BC, Sun H, Qian JQ, Liang H, Zhu JP, et al. 2024. Interaction between root exudates of medicinal plants and rhizosphere microorganisms and its application in ecological planting of Chinese medicinal materials. China Journal of Chinese Materia Medica 49:2128−37

doi: 10.19540/j.cnki.cjcmm.20240119.102
[40]

Stone BW, Li J, Koch BJ, Blazewicz SJ, Dijkstra P, et al. 2021. Nutrients cause consolidation of soil carbon flux to small proportion of bacterial community. Nature Communications 12:3381

doi: 10.1038/s41467-021-23676-x
[41]

Lv J, Yang S, Zhou W, Liu Z, Tan J, et al. 2023. Microbial regulation of plant secondary metabolites: Impact, mechanisms and prospects. Microbiological Research 283:127688

doi: 10.1016/j.micres.2024.127688
[42]

Jamwal VL, Rather IA, Ahmed S, Kumar A, Gandhi SG. 2023. Changing rhizosphere microbial community and metabolites with developmental stages of Coleus barbatus. Microorganisms 11:705

doi: 10.3390/microorganisms11030705
[43]

Chen JM, Feng WM, Yan H, Liu P, Zhou GS, et al. 2022. Explore the interaction between root metabolism and rhizosphere microbiota during the growth of Angelica sinensis. Frontiers in Plant Science 13:1005711

doi: 10.3389/fpls.2022.1005711
[44]

Fan L, Wang J, Leng F, Li S, Ma X, et al. 2023. Effects of time-space conversion on microflora structure, secondary metabolites composition and antioxidant capacity of Codonopsis pilosula root. Plant Physiology and Biochemistry 198:107659

doi: 10.1016/j.plaphy.2023.107659
[45]

Ding JJ, Zhou GJ, Chen XJ, Xu W, Gao XM, et al. 2024. Analysis of microbial diversity and community structure of rhizosphere soil of three Astragalus species grown in special high-cold environment of northwestern Yunnan, China. Microorganisms 12:539

doi: 10.3390/microorganisms12030539