| [1] |
Chapman VJ, Chapman DJ, Chapman VJ, Chapman DJ. 1980. Occurrence, distribution and historical perspective. In Seaweeds and their uses. Dordrecht: Springer. pp. 1-29. doi: 10.1007/978-94-009-5806-7_1 |
| [2] |
Baweja P, Kumar S, Sahoo D, Levine I. 2016. Biology of Seaweeds. In Seaweed in Health and Disease Prevention, eds. Fleurence J, Levine I. Amsterdam: Academic Press. pp. 41−106. doi: 10.1016/B978-0-12-802772-1.00003-8 |
| [3] |
Premarathna AD, Jayasooriya AP, Kumara AMCP, Adhikari RB. 2020. Distribution and diversity of seaweed species in south coastal waters in Sri Lanka. Journal of Oceanography Marine Research 7(196):11 |
| [4] |
Thambugala K, Daranagama D, Kannangara S, Kodituwakku T. 2021. Revealing the endophytic mycoflora in tea (Camellia sinensis) leaves in Sri Lanka: the first comprehensive study. Phytotaxa 514(3):247−60 doi: 10.11646/phytotaxa.514.3.5 |
| [5] |
Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, et al. 2009. Fungal endophytes and bioprospecting. Fungal Biology Reviews 23(1-2):9−19 doi: 10.1016/j.fbr.2009.07.001 |
| [6] |
Kharkwal AC, Kharkwal H, Sherameti I, Oelmuller R, Varma A. 2008. Novel symbiotrophic endophytes. In Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics. 3rd Edition. Berlin, Heidelberg: Springer. pp. 753−66. doi: 10.1007/978-3-540-78826-3_35 |
| [7] |
Zhang Q, Zhang J, Yang L, Zhang L, Jiang D, et al. 2014. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biological Control 72:98−108 doi: 10.1016/j.biocontrol.2014.02.018 |
| [8] |
Haroon MH, Premaratne SR, Iqbal Choudhry M, Dharmaratne HW. 2013. A new β-glucuronidase inhibiting butyrolactone from the marine endophytic fungus Aspergillus terreus. Natural Product Research 27(12):1060−66 doi: 10.1080/14786419.2012.708659 |
| [9] |
Singh VK, Dwivedy AK, Singh A, Asawa S, Dwivedi A, et al. 2018. Fungal endophytes from seaweeds: an overview. In Microbial Biotechnology, eds. Patra J, Das G, Shin, HS. Singapore: Springer. pp. 483−98. doi: 10.1007/978-981-10-7140-9_22 |
| [10] |
Flewelling AJ, Johnson JA, Gray CA. 2013. Isolation and Bioassay Screening of Fungal Endophytes from North Atlantic Marine Macroalgae. Botanica Marina 56(3):287−97 doi: 10.1515/bot-2012-0224 |
| [11] |
Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N, Ravishankar JP, Doble M, et al. 2010. Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Botanica Marina 53(5):457−68 doi: 10.1515/bot.2010.045 |
| [12] |
Wolski EA. 2023. The versatility of Penicillium species to degrade organic pollutants and its use for wastewater treatment. Studies in Fungi 8:2 doi: 10.48130/sif-2023-0002 |
| [13] |
Nicoletti R, Fiorentino A, Scognamiglio M. 2014. Endophytism of Penicillium species in woody plants. The Open Mycology Journal 8:1−26 doi: 10.2174/1874437001408010001 |
| [14] |
Toghueo RMK, Boyom FF. 2020. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 10(3):107 doi: 10.1007/s13205-020-2081-1 |
| [15] |
Bennett S. 2007. An overview of the genus Aspergillus. In The Aspergilli, eds. Baker SE, Bennett JW. Boca Raton: CRC Press. pp. 23−34. doi: 10.1201/9781420008517-6 |
| [16] |
Hagag A, Abdelwahab MF, Abd El-kader AM, Fouad MA. 2022. The endophytic Aspergillus strains: a bountiful source of natural products. Journal of Applied Microbiology 132(6):4150−69 doi: 10.1111/jam.15489 |
| [17] |
Wang P, Yu JH, Zhu K, Wang Y, Cheng ZQ, et al. 2018. Phenolic bisabolane sesquiterpenoids from a Thai mangrove endophytic fungus, Aspergillus sp. xy02. Fitoterapia 127:322−27 doi: 10.1016/j.fitote.2018.02.031 |
| [18] |
Rosenblueth M, Martínez-Romero E. 2006. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions 19(8):827−37 doi: 10.1094/MPMI-19-0827 |
| [19] |
Zuccaro A, Mitchell J. 2005. Fungal communities of seaweeds. In The Fungal Community: Its Organization and Role in the Ecosystem, eds. Dighton J, White JF. New York, NY, USA: CRC Pres. pp. 533−80. doi: 10.1201/9781420027891 |
| [20] |
Zhang Y, Mu J, Feng Y, Kang Y, Zhang J, et al. 2009. Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy. Marine Drugs 7(2):97−112 doi: 10.3390/md7020097 |
| [21] |
Thambugala KM, Daranagama DA, Phillips AJL, Kannangara SD, Promputtha I. 2020. Fungi vs. fungi in biocontrol: an overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cellular and Infection Microbiology 10:604923 doi: 10.3389/fcimb.2020.604923 |
| [22] |
Navoda H, Dinushani Anupama D. 2022. Evaluation of antifungal plant extracts against cereal and legume seed-borne pathogens for effective management. Studies in Fungi 7:9 doi: 10.48130/sif-2022-0009 |
| [23] |
Suwannarach N, Khuna S, Chaiwong K, Senwanna C, Nuangmek W, et al. 2024. Identification and fungicide sensitivity of the blue mold pathogen in postharvest-stored elephant garlic bulbs in Thailand. Studies in Fungi 9:e015 doi: 10.48130/sif-0024-0015 |
| [24] |
Ul Haq I, Sarwar MK, Faraz A, Latif MZ. 2020. Synthetic chemicals: major component of plant disease management. In Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches, eds. Ul Haq I, Ijaz S. Cham: Springer International Publishing. pp. 53−81. doi: 10.1007/978-3-030-35955-3_4 |
| [25] |
Kamat S, Kumari M, Taritla S, Jayabaskaran C. 2020. Endophytic fungi of marine Alga from Konkan coast, India—a rich source of bioactive material. Frontiers in Marine Science 7:31 doi: 10.3389/fmars.2020.00031 |
| [26] |
Wen J, Okyere SK, Wang S, Wang J, Xie L, et al. 2022. Endophytic fungi: an effective alternative source of plant-derived bioactive compounds for pharmacological studies. Journal of Fungi 8(2):205 doi: 10.3390/jof8020205 |
| [27] |
Srijudanu A, Piasai O, Leesutthiphonchai W, Wanitch M, et al. 2023. Biocontrol of Colletotrichum falcatum causing red rot disease of sugarcane using non-toxigenic Aspergillus sp. Chiang Mai Journal of Science 50(3):1−12 doi: 10.12982/cmjs.2023.032 |
| [28] |
Pu T, Shi J, Tao L, Fan L, Su F, et al. 2023. Mechanism of Antifungal Activity of Piperine against Botrytis Cinerea. Chiang Mai Journal of Science 50(2):1−13 doi: 10.12982/CMJS.2023.012 |
| [29] |
Yang EF, Karunarathna SC, Tibpromma S, Stephenson SL, Promputtha I, et al. 2023. Endophytic fungi associated with mango show in vitro antagonism against bacterial and fungal pathogens. Agronomy 13:169 doi: 10.3390/agronomy13010169 |
| [30] |
Lu L, Karunarathna SC, Hyde KD, Suwannarach N, Elgorban AM, et al. 2022. Endophytic fungi associated with coffee leaves in China exhibited in vitro antagonism against fungal and bacterial pathogens. Journal of Fungi 8(7):698 doi: 10.3390/jof8070698 |
| [31] |
Du TY, Karunarathna SC, Zhang X, Dai DQ, Mapook A, et al. 2022. Endophytic fungi associated with Aquilaria sinensis (agarwood) from China show antagonism against bacterial and fungal pathogens. Journal of Fungi 8(11):1197 doi: 10.3390/jof8111197 |
| [32] |
Ahamed F, Murugan M. 2019. Isolation and characterization of marine endophytic fungi from seaweeds, and bioactivity of their crude extracts. Journal of Pure and Applied Microbiology 13(3):1451−60 doi: 10.22207/jpam.13.3.15 |
| [33] |
Thambugala KM, Daranagama DA, Phillips AJL, Bulgakov TS, Bhat DJ, et al. 2017. Microfungi on Tamarix. Fungal Diversity 82:239−306 doi: 10.1007/s13225-016-0371-z |
| [34] |
Sabry S. 2015. Studies on cabbage alternaria leaf spot disease. Master Thesis. Zagazig University, Egypt. 229 pp. |
| [35] |
Visagie CM, Houbraken J. 2020. Updating the taxonomy of Aspergillus in South Africa. Studies in Mycology 95:253−92 doi: 10.1016/j.simyco.2020.02.003 |
| [36] |
Eshboev F, Mamadalieva N, Nazarov PA, Hussain H, Katanaev V, et al. 2024. Antimicrobial action mechanisms of natural compounds isolated from endophytic microorganisms. Antibiotics 13(3):271 doi: 10.3390/antibiotics13030271 |
| [37] |
Karthika M, Rasmi AR. 2022. Diversity and extracellular enzyme production of fungal endophytes from the genus Ocimum L. Biosciences Biotechnology Research Asia 19(4):1113−22 doi: 10.13005/bbra/3060 |
| [38] |
Udayanga D, Manamgoda DS, Liu X, Chukeatirote E, Hyde KD. 2013. What are the common anthracnose pathogens of tropical fruits? Fungal Diversity 61:165−79 doi: 10.1007/s13225-013-0257-2 |
| [39] |
Ciofini A, Negrini F, Baroncelli R, Baraldi E. 2022. Management of post-harvest anthracnose: current approaches and future perspectives. Plants 11(14):1856 doi: 10.3390/plants11141856 |
| [40] |
Wu C, Wang Y, Yang Y. 2022. Pestalotiopsis diversity: species, dispositions, secondary metabolites, and bioactivities. Molecules 27(22):8088 doi: 10.3390/molecules27228088 |
| [41] |
Aly AH, Edrada-Ebel R, Indriani ID, Wray V, Müller WEG, et al. 2008. Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense. Journal of Natural Products 71(6):972−80 doi: 10.1021/np070447m |
| [42] |
Cui CM, Li XM, Li CS, Sun HF, Gao SS, et al. 2009. Benzodiazepine alkaloids from marine-derived endophytic fungus Aspergillus ochraceus. Helvetica Chimica Acta 92(7):1366−70 doi: 10.1002/hlca.200900084 |
| [43] |
Cui CM, Li XM, Li CS, Proksch P, Wang BG. 2010. Cytoglobosins A-G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. Journal of Natural Products 73(4):729−33 doi: 10.1021/np900569t |
| [44] |
Thambugala K, Daranagama D, Kannangara S. 2022. Biocontrol potential of endophytic fungi in tea (Camellia sinensis (L.) Kuntze) leaves against selected fungal phytopathogens. Malaysian Journal of Microbiology 18(6):665−69 doi: 10.21161/mjm.220055 |
| [45] |
Zhang Y, Li XM, Proksch P, Wang BG. 2007. Ergosterimide, a new natural Diels–Alder adduct of a steroid and maleimide in the fungus Aspergillus niger. Steroids 72(9-10):723−27 doi: 10.1016/j.steroids.2007.05.009 |
| [46] |
Zhang Y, Li XM, Wang CY, Wang BG. 2007. A new naphthoquinoneimine derivative from the marine algal-derived endophytic fungus Aspergillus niger EN-13. Chinese Chemical Letters 18(8):951−53 doi: 10.1016/j.cclet.2007.05.054 |
| [47] |
Haider M, Bukhari S, Binyamin R, Habib A. 2016. Fungi associated with guava anthracnose and management of Colletotrichum gloeosporioides through biological and chemical means. Pakistan Journal of Phytopathology 28(2):153 |
| [48] |
Flewelling AJ, Ellsworth KT, Sanford J, Forward E, Johnson JA, et al. 2013. Macroalgal endophytes from the Atlantic coast of Canada: a potential source of antibiotic natural products? Microorganisms 1:175−87 doi: 10.3390/microorganisms1010175 |
| [49] |
Miao FP, Liang XR, Liu XH, Ji NY. 2014. Aspewentins A-C, norditerpenes from a cryptic pathway in an algicolous strain of Aspergillus wentii. Journal of Natural Products 77(2):429−32 doi: 10.1021/np401047w |
| [50] |
Wu B, Wu X, Sun M, Li M. 2013. Two novel tyrosinase inhibitory sesquiterpenes induced by CuCl2 from a marine-derived fungus Pestalotiopsis sp. Z233. Marine Drugs 11(8):2713−21 doi: 10.3390/md11082713 |
| [51] |
Miao FP, Li XD, Liu XH, Cichewicz RH, et al. 2012. Secondary metabolites from an algicolous Aspergillus versicolor strain. Marine Drugs 10:131−39 doi: 10.3390/md10010131 |
| [52] |
Cui CM, Li XM, Meng L, Li CS, Huang CG, et al. 2010. 7-Nor-ergosterolide, a pentalactone-containing norsteroid and related steroids from the marine-derived endophytic Aspergillus ochraceus EN-31. Journal of Natural Products 73(11):1780−84 doi: 10.1021/np100386q |
| [53] |
Gamal-Eldeen AM, Abdel-Lateff A, Okino T. 2009. Modulation of carcinogen metabolizing enzymes by chromanone A; a new chromone derivative from algicolous marine fungus Penicillium sp. Environmental Toxicology and Pharmacology 28(3):317−22 doi: 10.1016/j.etap.2009.05.010 |
| [54] |
Osterhage C, Kaminsky R, König GM, Wright AD. 2000. Ascosalipyrrolidinone A, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae. The Journal of Organic Chemistry 65(20):6412−17 doi: 10.1021/jo000307g |