| [1] |
Hassaan M, Nemr A El, Hassaan MA. 2017. Health and environmental impacts of dyes: mini review. American Journal of Environmental Science and Engineering 1:64−67 |
| [2] |
Luan M, Jing G, Piao Y, Liu D, Jin L. 2017. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation. Arabian Journal of Chemistry 10:S769−S776 doi: 10.1016/j.arabjc.2012.12.003 |
| [3] |
Wang N, Zhang Z, Zhang Y, Xu X, Guan Q. 2025. Fe-Mn oxide activating persufate for the in-situ chemical remediation of organic contaminated groundwater. Separation and Purification Technology 355:129566 doi: 10.1016/j.seppur.2024.129566 |
| [4] |
Zhang Y, Xu L, Wang J, Pan H, Dou M, et al. 2024. Bagasse-based porous flower-like MoS2/carbon composites for efficient microwave absorption. Carbon Letters doi: 10.1007/s42823-024-00832-z |
| [5] |
Zhang K, Ye Z, Qi M, Cai W, Saraiva JL, et al. 2025. Water quality impact on fish behavior: a review from an aquaculture perspective. Reviews in Aquaculture 17:12985 doi: 10.1111/raq.12985 |
| [6] |
Zhang X, Usman M, Irshad AUR, Rashid M, Khattak A. 2024. Investigating spatial effects through machine learning and leveraging explainable AI for child malnutrition in Pakistan. ISPRS International Journal of Geo-Information 13:330 doi: 10.3390/ijgi13090330 |
| [7] |
Li W, Mu B, Yang Y. 2019. Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology 277:157−70 doi: 10.1016/j.biortech.2019.01.002 |
| [8] |
Chaukura N, Murimba EC, Gwenzi W. 2017. Synthesis, characterisation and methyl orange adsorption capacity of ferric oxide–biochar nano-composites derived from pulp and paper sludge. Applied Water Science 7:2175−86 doi: 10.1007/s13201-016-0392-5 |
| [9] |
Iqbal A, Haq AU, Cerrón-Calle GA, Ali Raza Naqvi S, Westerhoff P, et al. 2021. Green synthesis of flower-shaped copper oxide and nickel oxide nanoparticles via capparis decidua leaf extract for synergic adsorption-photocatalytic degradation of pesticides. Catalysts 11:806 doi: 10.3390/catal11070806 |
| [10] |
Jabeen S, Sherazi TA, Ullah R, Ali Raza Naqvi S, Rasheed MA, et al. 2021. Electrodeposition-assisted formation of anodized TiO2–CuO heterojunctions for solar water splitting. Applied Nanoscience 11:79−90 doi: 10.1007/s13204-020-01557-x |
| [11] |
Al-Rawashdeh NAF, Allabadi O, Aljarrah MT. 2020. Photocatalytic activity of graphene oxide/zinc oxide nanocomposites with embedded metal nanoparticles for the degradation of organic dyes. ACS Omega 5:28046−55 doi: 10.1021/acsomega.0c03608 |
| [12] |
Gul I, Sayed M, Rehman F, Wang J, Fu P, et al. 2024. Unlocking the potential of multifunctional and highly porous Ti3C2/TiO2@Bi2O3 – based MXene: synergetic photocatalytic activation of peroxymonosulfate, hydrogen evolution and antimicrobial activity. Applied Catalysis B: Environment and Energy 359:124493 doi: 10.1016/j.apcatb.2024.124493 |
| [13] |
Siriwong C, Wetchakun N, Inceesungvorn B, Channei D, Samerjai T, et al. 2012. Doped-metal oxide nanoparticles for use as photocatalysts. Progress in Crystal Growth and Characterization of Materials 58:145−63 doi: 10.1016/j.pcrysgrow.2012.02.004 |
| [14] |
Kumar SG, Rao KSRK. 2014. Polymorphic phase transition among the titania crystal structures using a solution-based approach: From precursor chemistry to nucleation process. Nanoscale 6:11574−632 doi: 10.1039/c4nr01657b |
| [15] |
Zhuang Q, Li X, Lian X, Hu H, Wang N, et al. 2024. Catalysis Enhancement of Co3O4 through the epitaxial growth of inert ZnO in peroxymonosulfate activation: the catalytic mechanism of surface hydroxyls in singlet oxygen generation. Crystal Growth & Design 25:319−29 doi: 10.1021/acs.cgd.4c01357 |
| [16] |
Wang ZL. 2004. Zinc oxide nanostructures: growth, properties and applications. Journal of Physics Condensed Matter 16:829−58 doi: 10.1088/0953-8984/16/25/r01 |
| [17] |
Sierra-Fernandez A, De la Rosa-García SC, Gomez-Villalba LS, Gómez-Cornelio S, Rabanal ME, et al. 2017. Synthesis, photocatalytic, and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage. ACS Applied Materials & Interfaces 9:24873−86 doi: 10.1021/acsami.7b06130 |
| [18] |
Zhou H, Guo J, Zhu G, Xu H, Tang X, et al. 2024. Flotation behavior and mechanism of smithsonite under the system of bidentate ligand sulfide sodium thiocyanate. Separation and Purification Technology 334:126086 doi: 10.1016/j.seppur.2023.126086 |
| [19] |
Chandak VS, Kathwate LH, Kumbhar MB, Kulal PM. 2025. Spray deposited high performance Fe-doped ZnO ethanol sensor operating at low temperatures. Journal of Industrial and Engineering Chemistry doi: 10.1016/j.jiec.2025.01.053 |
| [20] |
Aliaga J, Cifuentes N, González G, Sotomayor-Torres C, Benavente E. 2018. Enhancement photocatalytic activity of the heterojunction of two-dimensional hybrid semiconductors ZnO/V2O5. Catalysts 8:374 doi: 10.3390/catal8090374 |
| [21] |
Wang Y, Wang J, Cai R, Zhang J, Xia S, et al. 2024. Enhanced Local CO Coverage on Cu Quantum Dots for Boosting Electrocatalytic CO2 Reduction to Ethylene. Advanced Functional Materials 2024:2417764 doi: 10.1002/adfm.202417764 |
| [22] |
Sharma M, Sondhi H, Krishna R, Srivastava SK, Rajput P, et al. 2020. Assessment of GO/ZnO nanocomposite for solar-assisted photocatalytic degradation of industrial dye and textile effluent. Environmental Science and Pollution Research 27:32076−87 doi: 10.1007/s11356-020-08849-3 |
| [23] |
Shalaby A, Nihtianova D, Markov P, Staneva AD, Iordanova RS, et al. 2017. UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide nanocomposites with enhanced photocatalytic performance in degradation of methylene blue. ECS Journal of Solid State Science and Technology 6:M36−M43 doi: 10.1149/2.0231704jss |
| [24] |
Shan Z, Yang Y, Shi H, Zhu J, Tan X, et al. 2021. Hollow dodecahedra graphene oxide-cuprous oxide nanocomposites with effective photocatalytic and bactericidal activity. Frontiers in Chemistry 9:755836 doi: 10.3389/fchem.2021.755836 |
| [25] |
Sabaghnia N, Janmohammadi M, Dalili M, Karimi Z, Rostamnia S. 2019. Euphorbia leaf extract-assisted sustainable synthesis of Au NPs supported on exfoliated GO for superior activity on water purification: reduction of 4-NP and MB. Environmental Science and Pollution Research 26:11719−29 doi: 10.1007/s11356-019-04437-2 |
| [26] |
Kamran U, Rhee KY, Lee SY, Park SJ. 2022. Innovative progress in graphene derivative-based composite hybrid membranes for the removal of contaminants in wastewater: A review. Chemosphere 306:135590 doi: 10.1016/j.chemosphere.2022.135590 |
| [27] |
Lv X, Huang Y, Liu Z, Tian J, Wang Y, et a. 2009. Photoconductivity of bulk-film-based graphene sheets. Small 5:1682−87 doi: 10.1002/smll.200900044 |
| [28] |
Wang J, Gao Z, Li Z, Wang B, Yan Y, et al. 2011. Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. Journal of Solid State Chemistry 184:1421−27 doi: 10.1016/j.jssc.2011.03.006 |
| [29] |
Anjum F, Asiri AM, Khan MA, Khan MI, Khan SB, et al. 2021. Photo-degradation, thermodynamic and kinetic study of carcinogenic dyes via zinc oxide/graphene oxide nanocomposites. Journal of Materials Research and Technology 15:3171−91 doi: 10.1016/j.jmrt.2021.09.086 |
| [30] |
Shalaby A, Nihtianova D, Markov P, et al. 2025. Structural analysis of reduced graphene oxide by transmission electron microscopy. Bulgarian Chemical Communications 47:291−95 |
| [31] |
Karthik R, Thambidurai S. 2017. Synthesis of cobalt doped ZnO/reduced graphene oxide nanorods as active material for heavy metal ions sensor and antibacterial activity. Journal of Alloys and Compounds 715:254−65 doi: 10.1016/j.jallcom.2017.04.298 |
| [32] |
Tao HC, Fan LZ, Mei Y, Qu X. 2011. Self-supporting Si/Reduced Graphene Oxide nanocomposite films as anode for lithium ion batteries. Electrochemistry Communications 13:1332−35 doi: 10.1016/j.elecom.2011.08.001 |
| [33] |
Ramadoss A, Kim SJ. 2013. Facile preparation and electrochemical characterization of graphene/ZnO nanocomposite for supercapacitor applications. Materials Chemistry and Physics 140:405−11 doi: 10.1016/j.matchemphys.2013.03.057 |
| [34] |
Nuengmatcha P, Chanthai S, Mahachai R, Oh WC. 2016. Visible light-driven photocatalytic degradation of rhodamine B and industrial dyes (texbrite BAC-L and texbrite NFW-L) by ZnO-graphene-TiO2 composite. Journal of Environmental Chemical Engineering 4:2170−77 doi: 10.1016/j.jece.2016.03.045 |
| [35] |
Lonkar SP, Pillai V, Abdala A. 2019. Solvent-free synthesis of ZnO-graphene nanocomposite with superior photocatalytic activity. Applied Surface Science 465:1107−13 doi: 10.1016/j.apsusc.2018.09.264 |
| [36] |
Yasin M, Saeed M, Muneer M, Usman M, ul Haq A, et al. 2022. Development of Bi2O3-ZnO heterostructure for enhanced photodegradation of rhodamine B and reactive yellow dyes. Surfaces and Interfaces 30:101846 doi: 10.1016/j.surfin.2022.101846 |
| [37] |
Saeed M, Al-Saeed FA, Altaf M, Alahmari SD, Bokhari TH, et al. 2022. Synthesis of visible-light-driven Ag2O-Co3O4 Z-scheme photocatalyst for enhanced photodegradation of reactive yellow dye. New Journal of Chemistry 46:23297−304 doi: 10.1039/D2NJ03791B |
| [38] |
Saeed M, Khan I, Adeel M, Akram N, Muneer M. 2022. Synthesis of a CoO-ZnO photocatalyst for enhanced visible-light assisted photodegradation of methylene blue. New Journal of Chemistry 46:2224−31 doi: 10.1039/D1NJ05633F |
| [39] |
Pragathiswaran C, Abbubakkar BM, Govindhan P, Abuthahir KAS. 2015. Synthesis of TiO2 and ZnO nano composites with graphene oxide photo catalytic reduction and removal of chromium (VI) in aqueous solution. Journal of Applicable Chemistry 4:525−32 |
| [40] |
Feng Y, Feng N, Wei Y, Zhang G. 2014. An in situ gelatin-assisted hydrothermal synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light. RSC Advances 4:7933−43 doi: 10.1039/c3ra46417b |
| [41] |
Nisar A, Saeed M, Muneer M, Usman M, Khan I. 2022. Synthesis and characterization of ZnO decorated reduced graphene oxide (ZnO-rGO) and evaluation of its photocatalytic activity toward photodegradation of methylene blue. Environmental Science and Pollution Research 29:418−30 doi: 10.1007/s11356-021-13520-6 |
| [42] |
Saeed M, Adeel S, Abdur-Raoof H, Usman M, Mansha A. 2017. ZnO catalyzed degradation of methyl orange in aqueous medium. Chiang Mai Journal of Science 44:1646−53 |
| [43] |
Zhang GY, Feng Y, Wu QS, Xu YY, Gao DZ. 2012. Facile fabrication of flower-shaped Bi2WO6 superstructures and visible-light-driven photocatalytic performance. Materials Research Bulletin 47:1919−24 doi: 10.1016/j.materresbull.2012.04.023 |
| [44] |
Maruthupandy M, Qin P, Muneeswaran T, Rajivgandhi G, Quero F, et al. 2020. Graphene-zinc oxide nanocomposites (G-ZnO NCs): Synthesis, characterization and their photocatalytic degradation of dye molecules. Materials Science and Engineering: B 254:114516 doi: 10.1016/j.mseb.2020.114516 |
| [45] |
Azarang M, Shuhaimi A, Yousefi R, Sookhakian M. 2014. Effects of graphene oxide concentration on optical properties of ZnO/RGO nanocomposites and their application to photocurrent generation. Journal of Applied Physics 116:084307 doi: 10.1063/1.4894141 |
| [46] |
Salih E, Mekawy M, Hassan RYA, El-Sherbiny IM. 2016. Synthesis, characterization and electrochemical-sensor applications of zinc oxide/graphene oxide nanocomposite. Journal of Nanostructure in Chemistry 6:137−44 doi: 10.1007/s40097-016-0188-z |
| [47] |
Shoeb M, Singh BR, Mobin M, Afreen G, Khan W, et al. 2015. Kinetic study on mutagenic chemical degradation through three pot synthesiszed graphene@ZnO nanocomposite. PLoS One 10:0135055 doi: 10.1371/journal.pone.0135055 |
| [48] |
Zhou H, Guo J, Zhu G, Xie F, Tang X, et al. 2024. Highly efficient preparation of crystalline yttrium carbonate in sodium carbonate system: Formation and growth mechanism. Journal of Rare Earths doi: 10.1016/J.JRE.2024.08.013 |
| [49] |
Geng Y, Wang SJ, Kim JK. 2009. Preparation of graphite nanoplatelets and graphene sheets. Journal of Colloid and Interface Science 336:592−98 doi: 10.1016/j.jcis.2009.04.005 |
| [50] |
Dideykin A, Aleksenskiy AE, Kirilenko D, Brunkov P, Goncharov V, et al. 2011. Monolayer graphene from graphite oxide. Diamond and Related Materials 20:105−8 doi: 10.1016/j.diamond.2010.10.007 |
| [51] |
Long D, Li W, Ling L, Miyawaki J, Mochida I, et al. 2010. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26:16096−102 doi: 10.1021/la102425a |
| [52] |
Tu TH, Cam PTN, Van Trong Huy L, Phong MT, Nam HM, et al. 2019. Synthesis and application of graphene oxide aerogel as an adsorbent for removal of dyes from water. Materials Letters 238:134−37 doi: 10.1016/j.matlet.2018.11.164 |
| [53] |
Kumbhakar P, Pramanik A, Biswas S, Kole AK, Sarkar R, et al. 2018. In-situ synthesis of rGO-ZnO nanocomposite for demonstration of sunlight driven enhanced photocatalytic and self-cleaning of organic dyes and tea stains of cotton fabrics. Journal of Hazardous Materials 360:193−203 doi: 10.1016/j.jhazmat.2018.07.103 |
| [54] |
Pirhashemi M, Habibi-Yangjeh A. 2017. Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. Journal of Colloid and Interface Science 491:216−29 doi: 10.1016/j.jcis.2016.12.044 |
| [55] |
Maruthupandy M, Muneeswaran T, Vennila T, Vaishali CV, Anand M, et al. 2022. Photocatalytic efficiency of graphene/nickel oxide nanocomposites towards the degradation of anionic and cationic dye molecules under visible light. Journal of Photochemistry and Photobiology A: Chemistry 427:113819 doi: 10.1016/j.jphotochem.2022.113819 |
| [56] |
Saeed M, Asghar H, Khan I, Akram N, Usman M. 2025. Synthesis of TiO2-g-C3N4 for efficient photocatalytic degradation of Congo Red dye. Catalysis Today 447:115154 doi: 10.1016/j.cattod.2024.115154 |
| [57] |
Balcha A, Yadav OP, Dey T. 2016. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environmental Science and Pollution Research 23:25485−93 doi: 10.1007/s11356-016-7750-6 |
| [58] |
Saeed M, Alwadai N, Ben Farhat L, Baig A, Nabgan W, et al. 2022. Co3O4-Bi2O3 heterojunction: an effective photocatalyst for photodegradation of rhodamine B dye. Arabian Journal of Chemistry 15:103732 doi: 10.1016/j.arabjc.2022.103732 |