[1]

Zhang K, Chang L, Li G, Li Y. 2023. Advances and future research in ecological stoichiometry under saline-alkali stress. Environmental Science and Pollution Research 30:5475−86

doi: 10.1007/s11356-022-24293-x
[2]

Zhang Y, Miao S, Song Y, Wang X, Jin F. 2024. Biochar application reduces saline-alkali stress by improving soil functions and regulating the diversity and abundance of soil bacterial community in highly saline-alkali paddy field. Sustainability 16:1001

doi: 10.3390/su16031001
[3]

Jia B, Ren H, Wu S, Wu T, Li Y, et al. 2024. A Glycine soja S1 group bZIP transcription factor GsbZIP43 is a positive regulator of sodium bicarbonate stress tolerance. Environmental and Experimental Botany 217:105551

doi: 10.1016/j.envexpbot.2023.105551
[4]

Abowaly ME, Ali RA, Moghanm FSS, Gharib MSS, Moustapha ME, et al. 2023. Assessment of soil degradation and hazards of some heavy metals, using remote sensing and GIS techniques in the northern part of the Nile Delta, Egypt. Agriculture 13:76

doi: 10.3390/agriculture13010076
[5]

Bourne Y, Henrissat B. 2001. Glycoside hydrolases and glycosyltransferases: families and functional modules. Current Opinion in Structural Biology 11:593−600

doi: 10.1016/S0959-440X(00)00253-0
[6]

Zabotina OA, Zhang N, Weerts R. 2021. Polysaccharide biosynthesis: glycosyltransferases and their complexes. Frontiers in Plant Science 12:625307

doi: 10.3389/fpls.2021.625307
[7]

Sun X, Mahajan D, Chen B, Song Z, Lu L. 2021. A quantitative study of the Golgi retention of glycosyltransferases. Journal of Cell Science 134:jcs258564

doi: 10.1242/jcs.258564
[8]

Togayachi A, Kikuchi N, Kudo T, Narimatsu H. 2003. Comprehensive study on glycosyltransferases which determine glycosylation. Tanpakushitsu Kakusan koso. Protein, Nucleic Acid, Enzyme 48:1542−49

[9]

Li Q, Min D, Wang JPY, Peszlen I, Horvath L, et al. 2011. Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood. Tree Physiology 31:226−36

doi: 10.1093/treephys/tpr008
[10]

Atmodjo MA, Sakuragi Y, Zhu X, Burrell AJ, Mohanty SS, et al. 2011. Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan: galacturonosyltransferase complex. Proceedings of the National Academy of Sciences of the United States of America 108:20225−30

doi: 10.1073/pnas.1112816108
[11]

Ratke C, Terebieniec BK, Winestrand S, Derba-Maceluch M, Grahn T, et al. 2018. Downregulating aspen xylan biosynthetic GT43 genes in developing wood stimulates growth via reprograming of the transcriptome. New Phytologist 219:230−45

doi: 10.1111/nph.15160
[12]

Zhang L, Prabhakar PK, Bharadwaj VS, Bomble YJ, Pena MJ, et al. 2023. Glycosyltransferase family 47 (GT47) proteins in plants and animals. Essays in Biochemistry 67:639−52

doi: 10.1042/EBC20220152
[13]

Liu J, Luo M, Yan X, Yu C, Li S. 2016. Characterization of genes coding for galacturonosyltransferase-like (GATL) proteins in rice. Genes & Genomics 38:917−29

doi: 10.1007/s13258-016-0436-0
[14]

Zheng L, Wu H, Qanmber G, Ali F, Wang L, et al. 2020. Genome-wide study of the GATL gene family in Gossypium hirsutum L. reveals that GhGATL genes act on pectin synthesis to regulate plant growth and fiber elongation. Genes 11:64

doi: 10.3390/genes11010064
[15]

Sterling JD, Atmodjo MA, Inwood SE, Kumar Kolli VS, Quigley HF, et al. 2006. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proceedings of the National Academy of Sciences of the United States of America 103:5236−41

doi: 10.1073/pnas.0600120103
[16]

Biswal AK, Atmodjo MA, Pattathil S, Amos RA, Yang X, et al. 2018. Working towards recalcitrance mechanisms: increased xylan and homogalacturonan production by overexpression of GAlactUronosylTransferase12 (GAUT12) causes increased recalcitrance and decreased growth in Populus. Biotechnology for Biofuels 11:9

doi: 10.1186/s13068-017-1002-y
[17]

Biswal AK, Hao Z, Pattathil S, Yang X, Winkeler K, et al. 2015. Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnology for Biofuels 8:41

doi: 10.1186/s13068-015-0218-y
[18]

Rennie EA, Hansen SF, Baidoo EEK, Hadi MZ, Keasling JD, et al. 2012. Three members of the Arabidopsis glycosyltransferase family 8 are xylan glucuronosyltransferases. Plant Physiology 159:1408−17

doi: 10.1104/pp.112.200964
[19]

Mishra P, Singh A, Verma AK, Mishra SK, Singh R, et al. 2022. MicroRNA775 targets a probable β-(1,3)-Galactosyltransferase to regulate growth and development in Arabidopsis thaliana. Journal of Plant Growth Regulation 41:3271−84

doi: 10.1007/s00344-021-10511-2
[20]

Kong Y, Zhou G, Avci U, Gu X, Jones C, et al. 2009. Two poplar glycosyltransferase genes, PdGATL1.1 and PdGATL1.2, are functional orthologs to PARVUS/AtGATL1 in Arabidopsis. Molecular Plant 2:1040−50

doi: 10.1093/mp/ssp068
[21]

Broxterman SE, Schols HA. 2018. Characterisation of pectin-xylan complexes in tomato primary plant cell walls. Carbohydrate Polymers 197:269−76

doi: 10.1016/j.carbpol.2018.06.003
[22]

Kohorn BD. 2016. Cell wall-associated kinases and pectin perception. Journal of Experimental Botany 67:489−94

doi: 10.1093/jxb/erv467
[23]

Liu J, Zhang W, Long S, Zhao C. 2021. Maintenance of cell wall integrity under high salinity. International Journal of Molecular Sciences 22:3260

doi: 10.3390/ijms22063260
[24]

Gigli-Bisceglia N, van Zelm E, Huo W, Lamers J, Testerink C. 2022. Arabidopsis root responses to salinity depend on pectin modification and cell wall sensing. Development 149:dev200363

doi: 10.1242/dev.200363
[25]

Mohnen D, Atmodjo M, Tan L, Amos R, Zhua X, et al. 2012. Synthesis of the plant cell wall's most complex glycan: pectin - surprises in glycosyltransferase processing and anchoring in the Golgi. The FASEB Journal 349.3

doi: 10.1096/fasebj.26.1_supplement.349.3
[26]

Li Z, Wang C, Long D, Jiang Y, He L, et al. 2022. Genome-wide identification, bioinformatics characterization and functional analysis of pectin methylesterase inhibitors related to low temperature-induced juice sac granulation in navel orange (Citrus sinensis Osbeck). Scientia Horticulturae 298:110983

doi: 10.1016/j.scienta.2022.110983
[27]

Coutinho FS, Rodrigues JM, Lima LL, Mesquita RO, Carpinetti PA, et al. 2021. Remodeling of the cell wall as a drought-tolerance mechanism of a soybean genotype revealed by global gene expression analysis. aBIOTECH 2:14−31

doi: 10.1007/s42994-021-00043-4
[28]

An P, Li X, Zheng Y, Matsuura A, Abe J, et al. 2014. Effects of NaCl on root growth and cell wall composition of two soya bean cultivars with contrasting salt tolerance. Journal of Agronomy and Crop Science 200:212−18

doi: 10.1111/jac.12060
[29]

Cheng L, Ni X, Zheng M, Sun L, Wang X, et al. 2018. Expressional characterization of galacturonosyltransferase-like gene family in Eucalyptus grandis implies a role in abiotic stress responses. Tree Genetics & Genomes 14:81

doi: 10.1007/s11295-018-1294-5
[30]

Zhu Y, Wu Y, Hu Y, Jia X, Zhao T, et al. 2019. Tolerance of two apple rootstocks to short-term salt stress: focus on chlorophyll degradation, photosynthesis, hormone and leaf ultrastructures. Acta Physiologiae Plantarum 41:87

doi: 10.1007/s11738-019-2877-y
[31]

Wang X, Zhang Z, Li J, Wang Y. 2024. Genome-wide analysis of the GT8 gene family in apple and functional identification of MhGolS2 in saline-alkali tolerance. Plant Molecular Biology 114:103

doi: 10.1007/s11103-024-01499-w
[32]

Wang WX, Zhang ZX, Wang X, Han C, Dong YJ, et al. 2023. Functional identification of ANR genes in apple (Malus halliana) that reduce saline-alkali stress tolerance. Plant Biology 25:892−901

doi: 10.1111/plb.13559
[33]

Zhang Z, Cheng J, Wang S, Gao Y, Xian X, et al. 2022. Molecular cloning and functional characterization of MhHEC2-like genes in Malus halliana reveals it enhances Fe (iron) deficiency tolerance. Functional & Integrative Genomics 22:1283−95

doi: 10.1007/s10142-022-00917-w
[34]

Zhu P, Chen Y, Zhang J, Wu F, Wang X, et al. 2021. Identification, classification, and characterization of AP2/ERF superfamily genes in Masson pine (Pinus massoniana Lamb.). Scientific Reports 11:5441

doi: 10.1038/s41598-021-84855-w
[35]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30:2725−29

doi: 10.1093/molbev/mst197
[36]

Cheng L, Zhao T, Wu YX, Wang H, Zhang ZX, et al. 2020. Identification of AP2/ERF genes in apple (Malus × domestica) and demonstration that MdERF017 enhances iron deficiency tolerance. Plant Cell, Tissue and Organ Culture 143:465−82

doi: 10.1007/s11240-020-01925-z
[37]

Papastergiadis A, Mubiru E, Van Langenhove H, De Meulenaer B. 2012. Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric thiobarbituric acid reactive substances (TBARS) test in various foods. Journal of Agricultural and Food Chemistry 60:9589−94

doi: 10.1021/jf302451c
[38]

Ferreira DC Júnior, Gaion LA, Sousa GS Júnior, Santos DMM, Carvalho RF. 2018. Drought-induced proline synthesis depends on root-to-shoot communication mediated by light perception. Acta Physiologiae Plantarum 40:15

doi: 10.1007/s11738-017-2591-6
[39]

Xu C, Shan J, Liu T, Wang Q, Ji Y, et al. 2023. CONSTANS-LIKE 1a positively regulates salt and drought tolerance in soybean. Plant Physiology 191:2427−46

doi: 10.1093/plphys/kiac573
[40]

Wang X, Zhang ZX, Wang WX, Li ST, Li JL, et al. 2024. Functional identification of CCR1 gene in apple (Malus halliana) demonstrates that it enhances saline-alkali stress tolerance. Chemical and Biological Technologies in Agriculture 11:45

doi: 10.1186/s40538-024-00565-1
[41]

Wang D, Kanyuka K, Papp-Rupar M. 2023. Pectin: a critical component in cell-wall-mediated immunity. Trends in Plant Science 28:10−13

doi: 10.1016/j.tplants.2022.09.003
[42]

Hong PN, Lee C. 2017. Roles of pectin methylesterases and pectin methylesterase inhibitors in plant physiology. Journal of Agricultural, Life and Environmental Sciences 29:1−17

doi: 10.12972/jales.20170001
[43]

Nagayama T, Tatsumi A, Nakamura A, Yamaji N, Satoh S, et al. 2022. Effects of polygalacturonase overexpression on pectin distribution in the elongation zones of roots under aluminium stress. AoB Plants 14:plac003

doi: 10.1093/aobpla/plac003
[44]

Zhou K, Hu L, Li Y, Chen X, Zhang Z, et al. 2019. MdUGT88F1-mediated phloridzin biosynthesis regulates apple development and Valsa canker resistance. Plant Physiology 180:2290−305

doi: 10.1104/pp.19.00494
[45]

Yin Q, Qin W, Zhou Z, Wu AM, Deng W, et al. 2024. Banana MaNAC1 activates secondary cell wall cellulose biosynthesis to enhance chilling resistance in fruit. Plant Biotechnology Journal 22(2):413−26

doi: 10.1111/pbi.14195
[46]

Leroy C, Gril E, Ouali LS, Coste S, Gérard B, et al. 2019. Water and nutrient uptake capacity of leaf-absorbing trichomes vs. roots in epiphytic tank bromeliads. Environmental and Experimental Botany 163:112−23

doi: 10.1016/j.envexpbot.2019.04.012
[47]

Soltabayeva A, Sagi M. 2024. Determination of ROS generated by Arabidopsis xanthine dehydrogenase1 (AtXDH1) using nitroblue tetrazolium (NBT) and 3,3'-diaminobenzidine (DAP). In ROS Signaling in Plants, eds Corpas FJ, Palma JM. New York, NY: Humana. Volume 2798. pp. 65−77. doi: 10.1007/978-1-0716-3826-2_5

[48]

Xi Z, Wang Z, Fang Y, Hu Z, Hu Y, et al. 2013. Effects of 24-epibrassinolide on antioxidation defense and osmoregulation systems of young grapevines (V. vinifera L.) under chilling stress. Plant Growth Regulation 71:57−65

doi: 10.1007/s10725-013-9809-4
[49]

Yan PM, Zhang HF, Wang Q, Yan XY, Sun Y. 2010. Comparison of isozyme transformation in maize as a result of insertion of the chitinase gene. Phyton-International Journal of Experimental Botany 79:117−21

doi: 10.32604/phyton.2010.79.117
[50]

Rahman MA, Woo JH, Lee SH, Park HS, Kabir AH, et al. 2022. Regulation of Na+/H+ exchangers, Na+/K+ transporters, and lignin biosynthesis genes, along with lignin accumulation, sodium extrusion, and antioxidant defense, confers salt tolerance in alfalfa. Frontiers in Plant Science 13:1041764

doi: 10.3389/fpls.2022.1041764
[51]

Mian A, Oomen RJFJ, Isayenkov S, Sentenac H, Maathuis FJM, et al. 2011. Over-expression of an Na+- and K+-permeable HKT transporter in barley improves salt tolerance. The Plant Journal 68:468−79

doi: 10.1111/j.1365-313X.2011.04701.x
[52]

Wang H, Zhang D, Zhou X, Zhou G, Zong W, et al. 2022. Transcription factor AtOFP1 involved in ABA-mediated seed germination and root growth through modulation of ROS homeostasis in Arabidopsis. International Journal of Molecular Sciences 23:7427

doi: 10.3390/ijms23137427
[53]

Deng F, Tu L, Tan J, Li Y, Nie Y, et al. 2012. GbPDF1 Is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2. Plant Physiology 158:890−904

doi: 10.1104/pp.111.186742