[1] |
Bendahmane M, Dubois A, Raymond O, Le Bris M. 2013. Genetics and genomics of flower initiation and development in roses. Journal of Experimental Botany 64:847−57 doi: 10.1093/jxb/ers387 |
[2] |
Başer H, Altintaş A, Kurkcuoglu M. 2013. Turkish rose. A review of the history, ethnobotany and modern uses of rose petals, rose oil, rose water and other rose products. HerbalGram 96:40−53 |
[3] |
Mileva M, Ilieva Y, Jovtchev G, Gateva S, Zaharieva MM, et al. 2021. Rose flowers—a delicate perfume or a natural healer? Biomolecules 11:127 doi: 10.3390/biom11010127 |
[4] |
Scalliet G, Piola F, Douady CJ, Rety S, Raymond O, et al. 2008. Scent evolution in Chinese roses. Proceedings of the National Academy of Sciences of the United States of America 105:5927−32 doi: 10.1073/pnas.0711551105 |
[5] |
Zhou L, Wu S, Chen Y, Huang R, Cheng B, et al. 2024. Multi-omics analyzes of Rosa gigantea illuminate tea scent biosynthesis and release mechanisms. Nature Communications 15:8469 doi: 10.1038/s41467-024-52782-9 |
[6] |
Zhou L, Yu C, Cheng B, Han Y, Luo L, et al. 2020. Studies on the volatile compounds in flower extracts of Rosa odorata and R. chinensis. Industrial Crops and Products 146:112143 doi: 10.1016/j.indcrop.2020.112143 |
[7] |
Kigathi RN, Unsicker SB, Reichelt M, Kesselmeier J, Gershenzon J, et al. 2009. Emission of volatile organic compounds after herbivory from Trifolium pratense (L.) under laboratory and field conditions. Journal of Chemical Ecology 35:1335−48 doi: 10.1007/s10886-009-9716-3 |
[8] |
Muhlemann JK, Klempien A, Dudareva N. 2014. Floral volatiles: from biosynthesis to function. Plant, Cell & Environment 37:1936−49 doi: 10.1111/pce.12314 |
[9] |
Ibrahim M, Agarwal M, Hardy G, Ren Y. 2017. Optimized method to analyze rose plant volatile organic compounds by HS-SPME-GC-FID/MSD. Journal of Biosciences and Medicines 5:13−31 doi: 10.4236/jbm.2017.53003 |
[10] |
Dudareva N, Klempien A, Muhlemann JK, Kaplan I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198:16−32 doi: 10.1111/nph.12145 |
[11] |
Dudareva N, Cseke L, Blanc VM, Pichersky E. 1996. Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. The Plant Cell 8:1137−48 doi: 10.1105/tpc.8.7.1137 |
[12] |
Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M, et al. 2002. Rose scent: genomics approach to discovering novel floral fragrance-related genes. The Plant Cell 14:2325−38 doi: 10.1105/tpc.005207 |
[13] |
Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, et al. 2003. (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. The Plant Cell 15:1227−41 doi: 10.1105/tpc.011015 |
[14] |
Nagegowda DA, Gutensohn M, Wilkerson CG, Dudareva N. 2008. Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. The Plant Journal 55:224−39 doi: 10.1111/j.1365-313X.2008.03496.x |
[15] |
Ginglinger JF, Boachon B, Höfer R, Paetz C, Köllner TG, et al. 2013. Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers. The Plant Cell 25:4640−57 doi: 10.1105/tpc.113.117382 |
[16] |
Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, et al. 2006. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. The Journal of Biological Chemistry 281:23357−66 doi: 10.1074/jbc.M602708200 |
[17] |
Chen XM, Kobayashi H, Sakai M, Hirata H, Asai T, et al. 2011. Functional characterization of rose phenylacetaldehyde reductase (PAR), an enzyme involved in the biosynthesis of the scent compound 2-phenylethanol. Journal of Plant Physiology 168:88−95 doi: 10.1016/j.jplph.2010.06.011 |
[18] |
Koeduka T, Fujita Y, Furuta T, Suzuki H, Tsuge T, et al. 2017. Aromatic amino acid decarboxylase is involved in volatile phenylacetaldehyde production in loquat (Eriobotrya japonica) flowers. Plant Biotechnology 34:193−98 doi: 10.5511/plantbiotechnology.17.0926a |
[19] |
Lavid N, Wang J, Shalit M, Guterman I, Bar E, et al. 2002. O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiology 129:1899−907 doi: 10.1104/pp.005330 |
[20] |
Scalliet G, Journot N, Jullien F, Baudino S, Magnard JL, et al. 2002. Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose O-methyltransferases. FEBS Letters 523:113−18 doi: 10.1016/S0014-5793(02)02956-3 |
[21] |
Wang J, Pichersky E. 1998. Characterization of S-adenosyl-L-methionine: (Iso)eugenol O-methyltransferase involved in floral scent production in Clarkia breweri. Archives of Biochemistry and Biophysics 349:153−60 doi: 10.1006/abbi.1997.0452 |
[22] |
Koksal N, Saribas R, Kafkas E, Aslancan H, Sadighazadi S. 2015. Determination of volatile compounds of the first rose oil and the first rose water by HS-SPME/GC/MS techniques. African Journal of Traditional Complementary and Alternative Medicines 12:145−50 doi: 10.4314/ajtcam.v12i4.21 |
[23] |
Joichi A, Yomogida K, Awano KI, Ueda Y. 2005. Volatile components of tea-scented modern roses and ancient Chinese roses. Flavour and Fragrance Journal 20:152−57 doi: 10.1002/ffj.1388 |
[24] |
Hirata H, Ohnishi T, Ishida H, Tomida K, Sakai M, et al. 2012. Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts. Journal of Plant Physiology 169:444−51 doi: 10.1016/j.jplph.2011.12.005 |
[25] |
Hirata H, Ohnishi T, Watanabe N. 2016. Biosynthesis of floral scent 2-phenylethanol in rose flowers. Bioscience, Biotechnology, and Biochemistry 80:1865−73 doi: 10.1080/09168451.2016.1191333 |
[26] |
Sakai M, Hirata H, Sayama H, Sekiguchi K, Itano H, et al. 2007. Production of 2-phenylethanol in roses as the dominant floral scent compound from L-phenylalanine by two key enzymes, a PLP-dependent decarboxylase and a phenylacetaldehyde reductase. Bioscience, Biotechnology, and Biochemistry 71:2408−19 doi: 10.1271/bbb.70090 |
[27] |
Tieman D, Taylor M, Schauer N, Fernie AR, Hanson AD, et al. 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences of the United States of America 103:8287−92 doi: 10.1073/pnas.0602469103 |
[28] |
Tieman DM, Loucas HM, Kim JY, Clark DG, Klee HJ. 2007. Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry 68:2660−69 doi: 10.1016/j.phytochem.2007.06.005 |
[29] |
Sheng L, Zeng Y, Wei T, Zhu M, Fang X, et al. 2018. Cloning and functional verification of genes related to 2-phenylethanol biosynthesis in Rosa rugosa. Genes 9:576 doi: 10.3390/genes9120576 |
[30] |
Han Y, Wan H, Cheng T, Wang J, Yang W, et al. 2017. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis. Scientific Reports 7:43382 doi: 10.1038/srep43382 |
[31] |
Zhang X, Wu Q, Lan L, Peng D, Guan H, et al. 2024. Haplotype-resolved genome assembly of the diploid Rosa chinensis provides insight into the mechanisms underlying key ornamental traits. Molecular Horticulture 4:14 doi: 10.1186/s43897-024-00088-1 |
[32] |
Zhao CY, Xue J, Cai XD, Guo J, Li B, et al. 2016. Assessment of the key aroma compounds in rose-based products. Journal of Food and Drug Analysis 24:471−76 doi: 10.1016/j.jfda.2016.02.013 |
[33] |
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20 doi: 10.1093/bioinformatics/btu170 |
[34] |
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−15 doi: 10.1038/s41587-019-0201-4 |
[35] |
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33:290−95 doi: 10.1038/nbt.3122 |
[36] |
Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166−69 doi: 10.1093/bioinformatics/btu638 |
[37] |
Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42 doi: 10.1016/j.molp.2023.09.010 |
[38] |
Xie J, Chen Y, Cai G, Cai R, Hu Z, et al. 2023. Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Research 51:W587−W592 doi: 10.1093/nar/gkad359 |
[39] |
Sainsbury F, Thuenemann EC, Lomonossoff GP. 2009. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnology Journal 7:682−93 doi: 10.1111/j.1467-7652.2009.00434.x |
[40] |
Zhou L, Yu C, Cheng B, Wan H, Luo L, et al. 2020. Volatile compound analysis and aroma evaluation of tea-scented roses in China. Industrial Crops and Products 155:112735 doi: 10.1016/j.indcrop.2020.112735 |
[41] |
Feng L, Wang M, Wang J, Zang S, Xia W, et al. 2015. Isolation of 2-phenylethanol biosynthesis related genes and their relationship with 2-phenylethanol accumulation in Rosa rugosa. Acta Physiologiae Plantarum 37:256 doi: 10.1007/s11738-015-1996-3 |
[42] |
Wu S, Watanabe N, Mita S, Dohra H, Ueda Y, et al. 2004. The key role of phloroglucinol O-methyltransferase in the biosynthesis of Rosa chinensis volatile 1,3,5-trimethoxybenzene. Plant Physiology 135:95−102 doi: 10.1104/pp.103.037051 |
[43] |
Noh YM, Ait Hida A, Raymond O, Comte G, Bendahmane M. 2024. The scent of roses, a bouquet of fragrance diversity. Journal of Experimental Botany 75:1252−64 doi: 10.1093/jxb/erad470 |
[44] |
Scalliet G, Lionnet C, Le Bechec M, Dutron L, Magnard JL, et al. 2006. Role of petal-specific orcinol O-methyltransferases in the evolution of rose scent. Plant Physiology 140:18−29 doi: 10.1104/pp.105.070961 |
[45] |
Roccia A, Hibrand-Saint Oyant L, Cavel E, Caissard JC, Machenaud J, et al. 2019. Biosynthesis of 2-phenylethanol in rose petals is linked to the expression of one allele of RhPAAS. Plant Physiology 179:1064−79 doi: 10.1104/pp.18.01468 |
[46] |
Chen X, Baldermann S, Cao S, Lu Y, Liu C, et al. 2015. Developmental patterns of emission of scent compounds and related gene expression in roses of the cultivar Rosa x hybrida cv. 'Yves Piage'. Plant Physiology and Biochemistry 87:109−14 doi: 10.1016/j.plaphy.2014.12.016 |