[1]

Yao X, Song Y, Yang J, Tan Y, Corlett RT. 2021. Phylogeny and biogeography of the hollies (Ilex L., Aquifoliaceae). Journal of Systematics and Evolution 59:73−82

doi: 10.1111/jse.12567
[2]

Chong X, Li Y, Yan M, Wang Y, Li M, et al. 2022. Comparative chloroplast genome analysis of 10 Ilex species and the development of species-specific identification markers. Industrial Crops and Products 187:115408

doi: 10.1016/j.indcrop.2022.115408
[3]

Yao X, Zhang F, Corlett RT. 2022. Utilization of the hollies (Ilex L. spp.): a review. Forests 13:94

doi: 10.3390/f13010094
[4]

Peterken GF, Lloyd PS. 1967. Ilex Aquifolium L. Journal of Ecology 55:841−58

doi: 10.2307/2258429
[5]

Wunderlin RP, Poppleton JE. 1977. The florida species of Ilex (Aquifoliaceae). Florida Scientist 40:7−21

[6]

Morgan DL. 2013. Ilex decidua. American Nurseryman 213:38

[7]

Taylor JC. 1996. Possum haw. Flower and Garden 40:40

[8]

Dirr MA. 2011. Dirr's encyclopedia of trees and shrubs. Oregon, Portland: Timber Press

[9]

Tsang ACW, Corlett RT. 2005. Reproductive biology of the Ilex species (Aquifoliaceae) in Hong Kong, China. Canadian Journal of Botany 83:1645−54

doi: 10.1139/b05-131
[10]

Galíndez G, Ceccato D, Bubillo R, Lindow-López L, Malagrina G, et al. 2018. Three levels of simple morphophysiological dormancy in seeds of Ilex (Aquifoliaceae) species from Argentina. Seed Science Research 28:131−39

doi: 10.1017/S0960258518000132
[11]

Tezuka T, Yokoyama H, Tanaka H, Shiozaki S, Oda M. 2013. Factors affecting seed germination of Ilex latifolia and I. rotunda. HortScience 48:352−56

doi: 10.21273/HORTSCI.48.3.352
[12]

de Souza AC, de Oliveira LM, Bagatini KP, Souza GF, Liesch PP, et al. 2022. Causes of dormancy in Ilex paraguariensis pyrenes. Rodriguésia 73:e01942020

doi: 10.1590/2175-7860202273036
[13]

Zimmerman PW, Hitchcock AE. 1929. Vegetative propagation of holly. American Journal of Botany 16:556−70

doi: 10.1002/j.1537-2197.1929.tb09503.x
[14]

Tsaktsira M, Chavale E, Kostas S, Pipinis E, Tsoulpha P, et al. 2021. Vegetative propagation and ISSR-based genetic identification of genotypes of Ilex aquifolium 'Agrifoglio Commune'. Sustainability 13:10345

doi: 10.3390/su131810345
[15]

Tsaktsira M, Alevropoulos A, Tsoulpha P, Scaltsoyiannes V, Scaltsoyiannes A, et al. 2018. Inter- and intra-genetic variation on rooting ability of Ilex aquifolium L. varieties and cultivars. Propagation of Ornamental Plants 18:131−38

[16]

Rifaki N, Economou A, Scaltsoyiannes A. 2001. Factors affecting the rooting of Ilex aquifolium L. cuttings. Propagation of Ornamental Plants 1:31−35

[17]

Wendling I, Brondani GE, de Biassio A, Dutra LF. 2013. Vegetative propagation of adult Ilex paraguariensis trees through epicormic shoots. Acta Scientiarum. Agronomy 35:117−25

doi: 10.4025/actasciagron.v35i1.15958
[18]

Stuepp CA, de Bitencourt J, Wendling I, Koehler HS, Zuffellato-Ribas KC. 2017. Age of stock plants, seasons and IBA effect on vegetative propagation of Ilex paraguariensis. Revista Árvore 41:e410204

doi: 10.1590/1806-90882017000200004
[19]

Nascimento B, Sá ACS, Moraes C, Santos JCP, de Oliveira Pereira M, et al. 2020. Rooting cuttings of Ilex paraguariensis native to southern Brazil according to mother tree genotype, rooting environment and IBA use. Scientia Forestalis 48:e3087

doi: 10.18671/scifor.v48n128.24
[20]

Lambert CR, Blazich FA, LeBude AV. 2012. Propagation of Ilex vomitoria 'Dare County' by stem cuttings. Journal of Environmental Horticulture 30:55−57

doi: 10.24266/0738-2898.30.2.55
[21]

Tarragó J, Filip R, Mroginski L, Sansberro P. 2012. Influence of the irradiance on phenols content and rooting of Ilex paraguariensis cuttings collected from adult plants. Acta Physiologiae Plantarum 34:2419−24

doi: 10.1007/s11738-012-1009-8
[22]

Duarte MM, Mireski MC, Oliszeski A, Wendling I, Stuepp CA. 2019. Rooting of yerba mate cuttings with different lengths. Revista Eletrônica Científica da UERGS 5:6−12

doi: 10.21674/2448-0479.51.6-12
[23]

Cardoso JC, Sheng Gerald LT, Teixeira da Silva JA. 2018. Micropropagation in the twenty-first century. In Plant Cell Culture Protocols, eds Loyola-Vargas VM, Ochoa-Alejo N. New York, NY: Humana Press. Vol 1815. pp. 17–46. doi: 10.1007/978-1-4939-8594-4_2

[24]

Sun Y, Zhang D, Smagula J. 2010. Micropropagation of Ilex glabra (L.) A. Gray. HortScience 45:805−08

doi: 10.21273/HORTSCI.45.5.805
[25]

Yang Y, Zhang D, Li Z, Jin X, Dong J. 2015. Immature embryo germination and its micropropagation of Ilex crenata Thunb. HortScience 50:733−37

doi: 10.21273/HORTSCI.50.5.733
[26]

Majada JP, Sánchez-Tamés R, Revilla MA, Casares A. 2000. Micropropagation of Ilex aquifolium L. In Vitro Cellular & Developmental Biology - Plant 36:521−26

doi: 10.1007/s11627-000-0093-4
[27]

Luna C, Sansberro P, Mroginski L, Tarragó J. 2003. Micropropagation of Ilex dumosa (Aquifoliaceae) from nodal segments in a tissue culture system. Biocell 27:205−12

doi: 10.32604/biocell.2003.27.205
[28]

Dang JC, Kumaria S, Kumar S, Tandon P. 2011. Micropropagation of Ilex khasiana, a critically endangered and endemic holly of Northeast India. AoB PLANTS 2011:plr012

doi: 10.1093/aobpla/plr012
[29]

Griebeler AG, Consatti G, de Freitas EM, Sperotto RA. 2014. Optimal culture conditions for the initial development of Ilex paraguariensis A.St.-Hil. explants. Acta Botanica Brasilica 28:548−51

doi: 10.1590/0102-33062014abb3465
[30]

Xu S, Ying X, Cai S, Mei Y, Wang J. 2020. In vitro culture and rapid propagation of Ilex asprella. Medicinal Plants - International Journal of Phytomedicines and Related Industries 12:114−19

doi: 10.5958/0975-6892.2020.00015.5
[31]

Carvalho SD, Ortega M, Orellana M, Rodríguez M, Folta KM, et al. 2021. In vitro propagation of the Amazonian medicinal plant guayusa (Ilex guayusa) and effects of light in the growth and development of this shade tolerant plant. Plant Cell, Tissue and Organ Culture (PCTOC) 147:503−17

doi: 10.1007/s11240-021-02142-y
[32]

Read PE, Bavougian CM. 2012. In vitro rejuvenation of woody species. In Protocols for Micropropagation of Selected Economically-Important Horticultural Plants, eds Lambardi M, Ozudogru E, Jain S. Totowa, NJ: Humana Press. Vol 994. pp. 383–95. doi: 10.1007/978-1-62703-074-8_30

[33]

Aftab F. 2012. Progress and prospects for efficient micropropagation of woody plants. In Crop Production for Agricultural Improvement, eds Ashraf M, Öztürk M, Ahmad M, Aksoy A. Dordrecht: Springer Netherlands. pp. 363–77. doi: 10.1007/978-94-007-4116-4_13

[34]

Bhandari MS, Maikhuri S, Thakur A, Panwar GS, Shamoon A, Pandey S. 2022. Rapid multiplication of mature Eucalyptus hybrids through macro- and -micropropagation. The Nucleus 65:379−89

doi: 10.1007/s13237-022-00394-3
[35]

Avelar MLM, Souza DMSC, Macedo EH, Molinari LV, Brondani GE. 2020. In vitro establishment of Eucalyptus and Corymbia species from epicormic shoots. Revista Árvore 44:e4427

doi: 10.1590/1806-908820200000027
[36]

Sax MS, Bassuk N, Bridgen M. 2019. Tissue culture clonal propagation of hybrid white oaks for the urban environment. HortScience 54:2214−23

doi: 10.21273/HORTSCI14320-19
[37]

Muhammad A, Faheem A. 2012. Effect of auxins on axillary and de novo shoot regeneration from in vitro shoot cultures derived from forced epicormic buds of teak (Tectona grandis L.). Forestry Studies in China 14:180−86

doi: 10.1007/s11632-012-0301-4
[38]

Nascimento B, Sá ACS, de Lemos LB, da Rosa DP, de Oliveira Pereira M, et al. 2018. Three epicormic shoot techniques in I. paraguariensis mother trees and its cutting according to the material rejuvenation degree. Cerne 24:240−48

doi: 10.1590/01047760201824032584
[39]

Bisognin DA, Lencina KH, da Luz LV, Fleig FD, Gazzana D. 2018. Adventitious rooting competence and rescue of adult mate plants by cuttings. Revista Árvore 42:e420312

doi: 10.1590/1806-90882018000300012
[40]

Sansberro P, Rey H, Mroginski L, Collavino M. 1999. In vitro plant regeneration of Ilex paraguariensis (Aquifoliaceae). In Vitro Cellular & Developmental Biology - Plant 35:401−02

doi: 10.1007/s11627-999-0054-5
[41]

Mroginski LA, Rouvier SM, Fabisik JC, Levit M, Marassi MA, et al. 1999. Effect of medium composition and light supply on in vitro shoot proliferation in Ilex paraguariensis (Aquifoloaceae). Journal of Plant Nutrition 22:359−68

doi: 10.1080/01904169909365633
[42]

Aremu AO, Fawole OA, Makunga NP, Masondo NA, Moyo M, et al. 2020. Applications of cytokinins in horticultural fruit crops: trends and future prospects. Biomolecules 10:1222

doi: 10.3390/biom10091222
[43]

Fellman CD, Read PE, Hosier MA. 1987. Effects of thidiazuron and CPPU on meristem formation and shoot proliferation. HortScience 22:1197−200

doi: 10.21273/HORTSCI.22.6.1197
[44]

Faisal M, Alatar AA, Abdel-Salam EM, Qahtan AA. 2020. Effects of 4-CPPU on in vitro multiplication and sustainable generation of Hibiscus rosa-sinensis L. 'White Butterfly'. Saudi Journal of Biological Sciences 27:412−16

doi: 10.1016/j.sjbs.2019.11.002
[45]

Millan-Mendoza B, Graham J. 1999. Organogenesis and micropropagation in red raspberry using forchlorfenuron (CPPU). The Journal of Horticultural Science and Biotechnology 74:219−23

doi: 10.1080/14620316.1999.11511098
[46]

Sakr SS, Amin A, El-Mewafy E, Eid N. 2018. In vitro comparative study on Rosmarinus officinalis L. cultivars. Middle East Journal of Agriculture Research 7:703−15

[47]

Du Y, Cheng F, Zhong Y. 2020. Induction of direct somatic embryogenesis and shoot organogenesis and histological study in tree peony (Paeonia sect. Moutan). Plant Cell, Tissue and Organ Culture (PCTOC) 141:557−70

doi: 10.1007/s11240-020-01815-4
[48]

Caboni E, Biasi R, Delia G, Tonelli M. 2009. Effect of CPPU on in vitro axillary shoot proliferation and adventitious shoot regeneration in kiwifruit. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 143:456−61

doi: 10.1080/11263500903172136
[49]

Phillips GC, Garda M. 2019. Plant tissue culture media and practices: an overview. In Vitro Cellular & Developmental Biology - Plant 55:242−57

doi: 10.1007/s11627-019-09983-5
[50]

Susilawati Y, Nasution AM, Pratama AP, Herdiani E, Tjitraresmi A, et al. 2018. Comparative study of peperochromen-a from sasaladaan [Peperomia pellucida (L.) Kunth.] herbs in vivo and in vitro-cultered on MS, WPM and DKW media. Research Journal of Chemistry and Environment 22:99−105

[51]

Bosela MJ, Michler CH. 2008. Media effects on black walnut (Juglans nigra L.) shoot culture growth in vitro: evaluation of multiple nutrient formulations and cytokinin types. In Vitro Cellular & Developmental Biology - Plant 44:316−29

doi: 10.1007/s11627-008-9114-5
[52]

Hand C, Maki S, Reed BM. 2014. Modeling optimal mineral nutrition for hazelnut micropropagation. Plant Cell, Tissue and Organ Culture (PCTOC) 119:411−25

doi: 10.1007/s11240-014-0544-y
[53]

Preece JE, McGranahan GH, Long LM, Leslie CA. 1995. Somatic embryogenesis in walnut (Juglans regia). In Somatic Embryogenesis in Woody Plants, eds Jain SM, Gupta PK, Dordrecht: Springer. Volume 44–46. pp. 99–116. doi: 10.1007/978-94-011-0491-3_7

[54]

Li Q, Yu P, Lai J, Gu M. 2021. Micropropagation of the potential blueberry rootstock—Vaccinium arboreum through axillary shoot proliferation. Scientia Horticulturae 280:109908

doi: 10.1016/j.scienta.2021.109908