[1] |
Lu DQ, Richard KR. 2001. Flora of China, ed. Wu ZY. Vol. 16. Beijing: Science Press. pp. 7–10 |
[2] |
Xiao Q, Zhao L, Jiang C, Zhu Y, Zhang J, et al. 2022. Polysaccharides from Pseudostellaria heterophylla modulate gut microbiota and alleviate syndrome of spleen deficiency in rats. Scientific Reports 12:20217 doi: 10.1038/s41598-022-24329-9 |
[3] |
Kan Y, Liu Y, Huang Y, Zhao L, Jiang C, et al. 2022. The regulatory effects of Pseudostellaria heterophylla polysaccharide on immune function and gut flora in immunosuppressed mice. Food Science & Nutrition 10:3828−41 doi: 10.1002/fsn3.2979 |
[4] |
Li Y, Liu S, Guo K, Ding W, Wang R. 2022. Virome of Pseudostellaria heterophylla: Identification and characterization of three novel carlaviruses and one novel amalgavirus associated with viral diseases of Pseudostellaria heterophylla. Frontiers in Microbiology 13:955089 doi: 10.3389/fmicb.2022.955089 |
[5] |
Nellist CF, Ohshima K, Ponz F, Walsh JA. 2022. Turnip mosaic virus, a virus for all seasons. Annals of Applied Biology 180:312−27 doi: 10.1111/aab.12755 |
[6] |
Chen J, Zhou Y, Gu T, Guo X, Zhuang X, et al. 2022. First report of broad bean wilt virus 2 on Mirabilis jalapa in China. Plant Disease 107(6):149−58 doi: 10.1094/PDIS-06-22-1310-PDN |
[7] |
Fuji SI, Mochizuki N, Fujinaga M, Ikeda M, Shinoda K, et al. 2007. Incidence of viruses in Alstroemeria plants cultivated in Japan and characterization of Broad bean wilt virus-2, Cucumber mosaic virus and Youcai mosaic virus. Journal of General Plant Pathology 73:216−21 doi: 10.1007/s10327-007-0009-9 |
[8] |
Wang S, Cui W, Wu X, Yuan Q, Zhao J, et al. 2018. Suppression of nbe-miR166h-p5 attenuates leaf yellowing symptoms of potato virus X on Nicotiana benthamiana and reduces virus accumulation. Molecular Plant Pathology 19:2384−96 doi: 10.1111/mpp.12717 |
[9] |
Nicaise V. 2014. Crop immunity against viruses: outcomes and future challenges. Frontiers in Plant Science 5:660 doi: 10.3389/fpls.2014.00660 |
[10] |
Yang X, Huang J, Liu C, Chen B, Zhang T, et al. 2017. Rice stripe mosaic virus, a novel cytorhabdovirus infecting rice via leafhopper transmission. Frontiers in Microbiology 7:2140 doi: 10.3389/fmicb.2016.02140 |
[11] |
Noman A, Aqeel M, Qasim M, Haider I, Lou Y. 2020. Plant-insect-microbe interaction: a love triangle between enemies in ecosystem. Science of the Total Environment 699:134181 doi: 10.1016/j.scitotenv.2019.134181 |
[12] |
Wang LL, Wei XM, Ye XD, Xu HX, Zhou XP, et al. 2014. Expression and functional characterisation of a soluble form of Tomato yellow leaf curl virus coat protein. Pest Management Science 70:1624−31 doi: 10.1002/ps.3750 |
[13] |
Llave C. 2016. Dynamic cross-talk between host primary metabolism and viruses during infections in plants. Current Opinion in Virology 19:50−55 doi: 10.1016/j.coviro.2016.06.013 |
[14] |
Untiveros M, Fuentes S, Kreuze J. 2008. Molecular variability of sweet potato feathery mottle virus and other potyviruses infecting sweet potato in Peru. Archives of Virology 153:473−83 doi: 10.1007/s00705-007-0019-0 |
[15] |
Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24 doi: 10.1016/j.cell.2016.08.029 |
[16] |
Ma L, Zhang ZH, Yao BQ, Ma Z, Huang XT, et al. 2021. Effects of drought and heat on the productivity and photosynthetic characteristics of alpine meadow plants on the Qinghai-Tibetan Plateau. Journal of Mountain Science 18:2079−93 doi: 10.1007/s11629-020-6561-x |
[17] |
Mott KA, Peak D. 2013. Testing a vapour-phase model of stomatal responses to humidity. Plant, Cell & Environment 36:936−44 doi: 10.1111/pce.12026 |
[18] |
Wang Z, Wang C, Wang B, Wang X, Li J, et al. 2020. Interactive effects of air pollutants and atmospheric moisture stress on aspen growth and photosynthesis along an urban-rural gradient. Environmental Pollution 260:114076 doi: 10.1016/j.envpol.2020.114076 |
[19] |
Atkinson NJ, Urwin PE. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany 63:3523−43 doi: 10.1093/jxb/ers100 |
[20] |
Mittler R. 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Science 11:15−19 doi: 10.1016/j.tplants.2005.11.002 |
[21] |
Mishra R, Shteinberg M, Shkolnik D, Anfoka G, Czosnek H, et al. 2022. Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants. Molecular Plant Pathology 23:475−88 doi: 10.1111/mpp.13172 |
[22] |
Bergès SE, Vasseur F, Bediée A, Rolland G, Masclef D, et al. 2020. Natural variation of Arabidopsis thaliana responses to Cauliflower mosaic virus infection upon water deficit. PLoS Pathogens 16:e1008557 doi: 10.1371/journal.ppat.1008557 |
[23] |
Pandey P, Patil M, Priya P, Senthil-Kumar M. 2024. When two negatives make a positive: the favorable impact of the combination of abiotic stress and pathogen infection on plants. Journal of Experimental Botany 75:674−88 doi: 10.1093/jxb/erad413 |
[24] |
Gorovits R, Sobol I, Altaleb M, Czosnek H, Anfoka G. 2019. Taking advantage of a pathogen: understanding how a virus alleviates plant stress response. Phytopathology Research 1:20 doi: 10.1186/s42483-019-0028-4 |
[25] |
Shteinberg M, Mishra R, Anfoka G, Altaleb M, Brotman Y, et al. 2021. Tomato yellow leaf curl virus (TYLCV) promotes plant tolerance to drought. Cells 10:2875 doi: 10.3390/cells10112875 |
[26] |
Kuang YB, Cheng MZ, Lu YR, Cheng J, Ye ZY. 2017. Detection of Turnip mosaic virus and Broad bean wilt virus in Pseudostellaria heterophylla by duplex RT-PCR. Acta Phytophylacica Sinica 44:184−791(in Chinese) doi: 10.16420/j.issn.0513-353x.2016-0940 |
[27] |
Porra RJ, Thompson WA, Kriedemann PE. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics 975:384−94 doi: 10.1016/S0005-2728(89)80347-0 |
[28] |
Chinese Pharmacopoeia Commission. 2020. Pharmacopoeia of the People's Republic of China. 2020 Edition. China Medical Science Press: Beijing, China |
[29] |
Liang TT, Zhou Y, Lin B, Feng TT, Liu XL, et al. 2013. Polysaccharide extraction from Radix pseudostellariae with water extracting-ethanol precipitation method. Journal of Mountain Agriculture and Biology 32:79−82(in Chinese) doi: 10.15958/j.cnki.sdnyswxb.2013.01.003 |
[30] |
Benedetti CE, Costa CL, Turcinelli SR, Arruda P. 1998. Differential expression of a novel gene in response to coronatine, methyl jasmonate, and wounding in the Coi1 mutant of Arabidopsis. Plant Physiology 116:1037−42 doi: 10.1104/pp.116.3.1037 |
[31] |
Su J, Yang L, Zhu Q, Wu H, He Y, et al. 2018. Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biology 16:e2004122 doi: 10.1371/journal.pbio.2004122 |
[32] |
Zhai Y, Yuan Q, Qiu S, Li S, Li M, et al. 2021. Turnip mosaic virus impairs perinuclear chloroplast clustering to facilitate viral infection. Plant, Cell & Environment 44:3681−99 doi: 10.1111/pce.14157 |
[33] |
Tahmasebi AA, Dizadji A, Koohi Habibi M. 2013. Interaction of Cucumber mosaic virus and Bean yellow mosaic virus in co-infected plants of bean and broad bean. Archives of Phytopathology and Plant Protection 46:1081−92 doi: 10.1080/03235408.2012.757865 |
[34] |
Abrahamian P, Sobh H, Seblani R, Abou-Jawdah Y. 2015. Co-infection of two criniviruses and a begomovirus enhances the disease severity in cucumber. European Journal of Plant Pathology 142:521−30 doi: 10.1007/s10658-015-0630-y |
[35] |
Kiptui LJ, Toroitich FJ, Kilalo DC, Obonyo M. 2020. Interaction between cowpea aphid-borne mosaic virus isolates and its effect on passion fruit woodiness disease on Passiflora edulis Sims and Passiflora ligularis juss. Advances in Agriculture 2020:8876498 doi: 10.1155/2020/8876498 |
[36] |
He W, Li J, Pu M, Xu ZG, Gan L. 2020. Response of photosynthate distribution in potato plants to different LED spectra. Functional Plant Biology 47:1128−37 doi: 10.1071/FP20131 |
[37] |
Sugimoto H, Fujita T, Koesmaryono Y, Sato T. 1997. Canopy light distribution, photosynthesis and Tuber yield of eddoe plant characterized by clipping and non-clipping of daughter Tuber leaves. Journal of Agricultural Meteorology 52:889−92 doi: 10.2480/agrmet.52.889 |
[38] |
Wilkinson S, Weston AK, Marks DJ. 2020. Stabilising urea amine nitrogen increases potato Tuber yield by increasing chlorophyll content, reducing shoot growth rate and increasing biomass partitioning to roots and tubers. Potato Research 63:217−39 doi: 10.1007/s11540-019-09436-x |
[39] |
Qu M, Zheng G, Hamdani S, Essemine J, Song Q, et al. 2017. Leaf photosynthetic parameters related to biomass accumulation in a global rice diversity survey. Plant Physiology 175:248−58 doi: 10.1104/pp.17.00332 |
[40] |
Takai T, Ohsumi A, Arai Y, Iwasawa N, Yano M, et al. 2013. QTL analysis of leaf photosynthesis in rice. Japan Agricultural Research Quarterly: JARQ 47:227−35 doi: 10.6090/jarq.47.227 |
[41] |
Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ. 2004. Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1 requires salicylic acid, EDS1 and ABI1. The Plant Journal: for Cell and Molecular Biology 38:810−22 doi: 10.1111/j.1365-313X.2004.02086.x |
[42] |
Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17:287−91 doi: 10.1038/7036 |
[43] |
Augustine SM, Tzigos S, Snowdon R. 2022. Heat-killed tobacco mosaic virus mitigates plant abiotic stress symptoms. Microorganisms 11:87 doi: 10.3390/microorganisms11010087 |
[44] |
Aguilar E, Cutrona C, Del Toro FJ, Vallarino JG, Osorio S, et al. 2017. Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid. Plant, Cell & Environment 40:2909−30 doi: 10.1111/pce.13028 |
[45] |
Koo YM, Heo AY, Choi HW. 2020. Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal 36:1−10 doi: 10.5423/PPJ.RW.12.2019.0295 |
[46] |
Zhao M, Ren Y, Wei W, Yang J, Zhong Q, et al. 2021. Metabolite analysis of Jerusalem artichoke (Helianthus tuberosus L. ) seedlings in response to polyethylene glycol-simulated drought stress. International Journal of Molecular Sciences 22:3294 doi: 10.3390/ijms22073294 |
[47] |
Piasecka A, Sawikowska A, Kuczyńska A, Ogrodowicz P, Mikołajczak K, et al. 2017. Drought-related secondary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci. The Plant Journal 89:898−913 doi: 10.1111/tpj.13430 |
[48] |
Huang X, Rong W, Zhang X, Gao Y, Zhou Y, et al. 2024. Transcriptome and metabolome analysis reveal the dynamic changes and biosynthesis pathways of alkaloids in Sophora alopecuroides L. under drought stress. Industrial Crops and Products 212:118365 doi: 10.1016/j.indcrop.2024.118365 |