[1]

Liu T, Deng C, Song J, Wang J, Jiang S, et al. 2023. Preparation of self-foamed glass ceramics based on the cooperative treatment of various solid wastes: characterization of structure-properties and analysis of self-foaming behavior. Ceramics International 49:2570−82

doi: 10.1016/j.ceramint.2022.09.236
[2]

Wu S, Liu Y, Southam G, Nguyen TAH, Konhauser KO, et al. 2023. Ecological engineering of iron ore tailings into useable soils for sustainable rehabilitation. iScience 26:107102

doi: 10.1016/j.isci.2023.107102
[3]

Al-Lami MK, Nguyen D, Oustriere N, Burken JG. 2021. High throughput screening of native species for tailings eco-restoration using novel computer visualization for plant phenotyping. Science of The Total Environment 780:146490

doi: 10.1016/j.scitotenv.2021.146490
[4]

Raklami A, Meddich A, Oufdou K, Baslam M. 2022. Plants-microorganisms-based bioremediation for heavy metal cleanup: recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. International Journal of Molecular Sciences 23:5031

doi: 10.3390/ijms23095031
[5]

de O. Ribeiro S, de Oliveira RA, da Cunha FF, Cecon PR, de Oliveira JT. 2022. Xaraés grass under different irrigation depths to recover areas contaminated with iron mining tailings. Engenharia Agricola 42:e20210231

doi: 10.1590/1809-4430-Eng.Agric.v42n4e20210231/2022
[6]

Chen S, Liu W, Mei Z, Li H, Zhao W, et al. 2023. The synthesis of copper-modified biochar from Elsholtzia Harchowensis and its electrochemical activity towards the reduction of carbon dioxide. Frontiers in Chemistry 11:1238424

doi: 10.3389/fchem.2023.1238424
[7]

Kowitwiwat A, Sampanpanish P. 2020. Phytostabilization of arsenic and manganese in mine tailings using Pennisetum purpureum cv. Mott supplemented with cow manure and Acacia wood-derived biochar. Heliyon 6:e04552

doi: 10.1016/j.heliyon.2020.e04552
[8]

Zhang Y, Shen W, Wu M, Shen B, Li M, et al. 2020. Experimental study on the utilization of copper tailing as micronized sand to prepare high performance concrete. Construction and Building Materials 244:118312

doi: 10.1016/j.conbuildmat.2020.118312
[9]

Li X, Zhang X, Cui Z. 2017. Combined bioremediation for lead in mine tailings by Solanum nigrum L. and indigenous fungi. Chemistry and Ecology 33:932−48

doi: 10.1080/02757540.2017.1394458
[10]

Almeida HA, Silva JG, Custódio IG, Karam D, Garcia QS. 2022. Productivity and food safety of grain crops and forage species grown in iron ore tailings. Journal of Food Composition and Analysis 105:104198

doi: 10.1016/j.jfca.2021.104198
[11]

Dradrach A, Karczewska A, Bogacz A, Kawałko D, Pruchniewicz D. 2024. Accumulation of potentially toxic metals in ryegrass (Lolium perenne, L. ) and other components of lawn vegetation in variously contaminated sites of urban areas. Sustainability 16:8040

doi: 10.3390/su16188040
[12]

Gladkov EA, Gladkova ON, Glushetskaya LS. 2011. Estimation of heavy metal resistance in the second generation of creeping bentgrass (Agrostis solonifera) obtained by cell selection for resistance to these contaminants and the ability of this plant to accumulate heavy metals. Applied Biochemistry and Microbiology 47:776−79

doi: 10.1134/S0003683811080035
[13]

Niu K, Zhu R, Wang Y, Zhao C, Ma H. 2023. 24-epibrassinolide improves cadmium tolerance and lateral root growth associated with regulating endogenous auxin and ethylene in Kentucky bluegrass. Ecotoxicology and Environmental Safety 249:114460

doi: 10.1016/j.ecoenv.2022.114460
[14]

Ran S, Li H, Yu Y, Zhu T, Dao J, et al. 2024. Ecological characteristics of tall fescue and spatially organized communities: their contribution to mitigating cadmium damage. Journal of Hazardous Materials 480:135953

doi: 10.1016/j.jhazmat.2024.135953
[15]

Embrapa. 2011. Manual de métodos de análise de solo/Centro Nacional de Pesquisa de Solos. Centro Nacional de Pesquisa de Solos, Rio de Janeiro, RJ, BR

[16]

Nelson DW, Sommers LE. 1996. Total carbon, organic carbon and organic matter. Madison, WI: Soil Science Society of America. pp. 962−1010

[17]

Sun X, Xie L, Han L. 2019. Effects of exogenous spermidine and spermine on antioxidant metabolism associated with cold-induced leaf senescence in Zoysiagrass (Zoysia japonica Steud.). Horticulture, Environment, and Biotechnology 60:295−302

doi: 10.1007/s13580-018-0089-9
[18]

Smethurst CF, Shabala S. 2003. Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Functional Plant Biology 30:335−43

doi: 10.1071/FP02192
[19]

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248−54

doi: 10.1016/0003-2697(76)90527-3
[20]

Li Q, Li R, He F, Yang Z, Yu J. 2022. Growth and physiological effects of chitosan on heat tolerance in creeping bentgrass (Agrostis stolonifera). Grass Research 2:6

doi: 10.48130/GR-2022-0006
[21]

Sun X, Li X, Zhu J, Huang N, Bian X, et al. 2020. Polyamines and ethylene metabolism during cold acclimation in zoysiagrass (Zoysia Japonica Steud.). Acta Physiologiae Plantarum 42:138

doi: 10.1007/s11738-020-03122-z
[22]

Li J, Weng S, Fang J, Huang J, Lu F, et al. 2014. Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park. Huanjing Kexue 35:1509−15

doi: 10.13227/j.hjkx.2014.04.045
[23]

Nizam I. 2011. Effects of salinity stress on water uptake, germination and early seedling growth of perennial ryegrass. African Journal of Biotechnology 10:10418−24

doi: 10.5897/AJB11.1243
[24]

Sarathchandra SS, Rengel Z, Solaiman ZM. 2022. Remediation of heavy metal-contaminated iron ore tailings by applying compost and growing perennial ryegrass (Lolium perenne L.). Chemosphere 288:132573

doi: 10.1016/j.chemosphere.2021.132573
[25]

Ye ZH, Shu WS, Zhang ZQ, Lan CY, Wong MH. 2002. Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere 47:1103−11

doi: 10.1016/S0045-6535(02)00054-1
[26]

de Fátima Esteves G, de Souza KRD, Bressanin LA, Andrade PCC, Veroneze V Jr, et al. 2020. Vermicompost improves maize, millet and sorghum growth in iron mine tailings. Journal of Environmental Management 264:110468

doi: 10.1016/j.jenvman.2020.110468
[27]

Mendez MO, Maier RM. 2008. Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environmental Health Perspectives 116:278−83

doi: 10.1289/ehp.10608
[28]

Sahrawat KL. 2005. Iron toxicity in wetland rice and the role of other nutrients. Journal of Plant Nutrition 27:1471−504

doi: 10.1081/PLN-200025869
[29]

Majhi S, Sikdar M. 2023. How heavy metal stress affects the growth and development of pulse crops: insights into germination and physiological processes. 3 Biotech 13:155

doi: 10.1007/s13205-023-03585-0
[30]

Parera V, Parera CA, Feresin GE. 2023. Germination and early seedling growth of high andean native plants under heavy metal stress. Diversity 15:824

doi: 10.3390/d15070824
[31]

Singh H, Kumar D, Soni V. 2022. Performance of chlorophyll a fluorescence parameters in Lemna minor under heavy metal stress induced by various concentration of copper. Scientific Reports 12:10620

doi: 10.1038/s41598-022-14985-2
[32]

Xu S, Lin D, Sun H, Yang X, Zhang X. 2015. Excess iron alters the fatty acid composition of chloroplast membrane and decreases the photosynthesis rate: a study in hydroponic pea seedlings. Acta Physiologiae Plantarum 37:212

doi: 10.1007/s11738-015-1969-6
[33]

Huang S, Song Q, Li Q, Zhang H, Luo X, et al. 2020. Damage of heavy metals to Vallisneria natans (V. natans) and characterization of microbial community in biofilm. Aquatic Toxicology 225:105515

doi: 10.1016/j.aquatox.2020.105515
[34]

de Marcos Lapaz A, Santos de Camargos L, Yoshida CHP, Firmino AC, de Figueiredo PAM, et al. 2020. Response of soybean to soil waterlogging associated with iron excess in the reproductive stage. Physiology and Molecular Biology of Plants 26:1635−48

doi: 10.1007/s12298-020-00845-8
[35]

Luna C, Garcia-Seffino L, Arias C, Taleisnik E. 2000. Oxidative stress indicators as selection tools for salt tolerance in Chloris gayana. Plant Breeding 119:341−45

doi: 10.1046/j.1439-0523.2000.00504.x
[36]

Siqueira-Silva AI, Rios CO, Pereira EG. 2019. Iron toxicity resistance strategies in tropical grasses: the role of apoplastic radicular barriers. Journal of Environmental Sciences 78:257−66

doi: 10.1016/j.jes.2018.10.005
[37]

Müller C, da Silveira Silveira SF, de Menezes Daloso D, Mendes GC, Merchant A, et al. 2017. Ecophysiological responses to excess iron in lowland and upland rice cultivars. Chemosphere 189:123−33

doi: 10.1016/j.chemosphere.2017.09.033
[38]

Wairich A, Aung MS, Ricachenevsky FK, Masuda H. 2024. You can't always get as much iron as you want: how rice plants deal with excess of an essential nutrient. Frontiers in Plant Science 15:1381856

doi: 10.3389/fpls.2024.1381856
[39]

Rasheed Y, Khalid F, Ashraf H, Asif K, Maqsood MF, et al. 2024. Enhancing plant stress resilience with osmolytes and nanoparticles. Journal of Soil Science and Plant Nutrition 24:1871−906

doi: 10.1007/s42729-024-01821-x
[40]

Kabir AH, Begum MC, Haque A, Amin R, Swaraz AM, et al. 2016. Genetic variation in Fe toxicity tolerance is associated with the regulation of translocation and chelation of iron along with antioxidant defence in shoots of rice. Functional Plant Biology 43:1070−81

doi: 10.1071/FP16068