[1]

Barcellos C, Matos V, Lana RM, Lowe R. 2024. Climate change, thermal anomalies, and the recent progression of dengue in Brazil. Scientific Reports 14(1):5948

doi: 10.1038/s41598-024-56044-y
[2]

Chaudhry S, Sidhu GPS. 2022. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Reports 41(1):1−31

doi: 10.1007/s00299-021-02759-5
[3]

Sangiorgio D, Cellini A, Donati I, Pastore C, Onofrietti C, et al. 2020. Facing climate change: application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy 10(6):794

doi: 10.3390/agronomy10060794
[4]

Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. 2024. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. Frontiers in Plant Science 15:1349401

doi: 10.3389/fpls.2024.1349401
[5]

Petrović E, Vrandečić K, Ćosić J, Đermić E, Godena S. 2023. First report of Nigrospora species causing leaf spot on olive (Olea europaea L.). Horticulturae 9(10):1067

doi: 10.3390/horticulturae9101067
[6]

Conforto C, Lima NB, Silva FJA, Câmara MPS, Maharachchikumbura S, et al. 2019. Characterization of fungal species associated with cladode brown spot on Nopalea cochenillifera in Brazil. European Journal of Plant Pathology 155(4):1179−94

doi: 10.1007/s10658-019-01847-3
[7]

Wright ER, Folgado M, Rivera MC, Crelier A, Vasquez P, et al. 2008. Nigrospora sphaerica causing leaf spot and twig and shoot blight on blueberry: a new host of the pathogen. Plant Disease 92(1):171

doi: 10.1094/PDIS-92-1-0171B
[8]

Kwon Y, Kim M, Kwack YB, Kwak YS. 2017. First report of Nigrospora sp. causing kiwifruit postharvest black rot. New Zealand Journal of Crop and Horticultural Science 45(1):75−79

doi: 10.1080/01140671.2016.1244086
[9]

Wang J, Qin S, Fan R, Peng Q, Hu X, et al. 2023. Plant growth promotion and biocontrol of leaf blight caused by Nigrospora sphaerica on passion fruit by Endophytic Bacillus subtilis strain GUCC4. Journal of Fungi 9(2):132

doi: 10.3390/jof9020132
[10]

Zakaria L, Aziz WNW. 2018. Molecular identification of endophytic fungi from banana leaves (Musa spp.). Tropical Life Sciences Research 29:201−11

doi: 10.21315/tlsr2018.29.2.14
[11]

Huang R, Wang T, Xie XS, Ma KX, Fang XW, et al. 2016. Secondary metabolites from an endophytic fungus Nigrospora sp. Chemistry of Natural Compounds 52(4):697−99

doi: 10.1007/s10600-016-1745-x
[12]

Zhong F, Fan X, Ji W, Hai Z, Hu N, et al. 2022. Soil fungal community composition and diversity of culturable endophytic fungi from plant roots in the reclaimed area of the eastern coast of China. Journal of Fungi 8(2):124

doi: 10.3390/jof8020124
[13]

Wu PC, Tsai JC, Li FC, Lung SC, Su HJ. 2004. Increased levels of ambient fungal spores in Taiwan are associated with dust events from China. Atmospheric Environment. 38(29):4879−86

doi: 10.1016/j.atmosenv.2004.05.039
[14]

Hao Y, Aluthmuhandiram JVS, Chethana KWT, Manawasinghe IS, Li X, et al. 2020. Nigrospora species associated with various hosts from Shandong Peninsula, China. Mycobiology 48(3):169−83

doi: 10.1080/12298093.2020.1761747
[15]

Fan S, Li Q, Feng S, Lei Q, Abbas F, et al. 2022. Melatonin maintains fruit quality and reduces anthracnose in postharvest papaya via enhancement of antioxidants and inhibition of pathogen development. Antioxidants 11(5):804

doi: 10.3390/antiox11050804
[16]

Farina V, Passafiume R, Tinebra I, Scuderi D, Saletta F, et al. 2020. Postharvest application of Aloe vera gel-based edible coating to improve the quality and storage stability of fresh-cut papaya. Journal of Food Quality 2020:8303140

doi: 10.1155/2020/8303140
[17]

Odetayo T, Tesfay S, Ngobese NZ. 2022. Nanotechnology-enhanced edible coating application on climacteric fruits. Food Science & Nutrition 10(7):2149−67

doi: 10.1002/fsn3.2557
[18]

de Oliveira Filho JG, Duarte LGR, Silva YBB, Milan EP, Santos HV, et al. 2023. Novel approach for improving papaya fruit storage with carnauba wax nanoemulsion in combination with Syzigium aromaticum and Mentha spicata essential oils. Coatings 13(5):847

doi: 10.3390/coatings13050847
[19]

Parven A, Sarker MR, Megharaj M, Meftaul IM. 2020. Prolonging the shelf life of Papaya (Carica papaya L.) using Aloe vera gel at ambient temperature. Scientia Horticulturae 265:109228

doi: 10.1016/j.scienta.2020.109228
[20]

Perumal AB, Huang L, Nambiar RB, He Y, Li X, et al. 2022. Application of essential oils in packaging films for the preservation of fruits and vegetables: a review. Food Chemistry 375:131810

doi: 10.1016/j.foodchem.2021.131810
[21]

Li Y, Erhunmwunsee F, Liu M, Yang K, Zheng W, et al. 2022. Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chemistry 382:132312

doi: 10.1016/j.foodchem.2022.132312
[22]

Chaudhari AK, Dwivedy AK, Singh VK, Das S, Singh A, et al. 2019. Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. Environmental Science and Pollution Research 26(25):25414−31

doi: 10.1007/s11356-019-05932-2
[23]

Maciel AG, Duarte LGR, Dalsasso RR, Battisti AP, Fritz ARM, et al. 2024. Preharvest methods for controlling pathogen infection in fruits. In Plant Quarantine Challenges under Climate Change Anxiety, eds Abd-Elsalam KA, Abdel-Momen SM. Cham: Springer. pp. 463–511. doi: 10.1007/978-3-031-56011-8_15

[24]

Fukuyama CWT, Duarte LGR, Pedrino IC, Mitsuyuki MC, Bogusz S Junior, et al. 2024. Effect of carnauba wax nanoemulsion associated with Syzygium aromaticum and Mentha piperita essential oils as an alternative to extend lychee post-harvest shelf life. Sustainable Food Technology 2(2):426−36

doi: 10.1039/D3FB00251A
[25]

Sha H, Liu X, Xiao X, Zhang H, Gu X, et al. 2023. Nigrospora oryzae causing leaf spot disease on Chrysanthemum× morifolium ramat and screening of its potential antagonistic bacteria. Microorganisms 11(9):2224

doi: 10.3390/microorganisms11092224
[26]

Santamaría Basulto F, Sauri Duch E, Espadas y Gil F, Díaz Plaza R, Larqué Saavedra A, et al. 2009. Postharvest ripening and maturity indices for maradol papaya. Interciencia 34(8):583−88

[27]

McLafferty FW, Stauffer DA, Loh SY, Wesdemiotis C. 1999. Unknown identification using reference mass spectra. Quality evaluation of databases. Journal of the American Society for Mass Spectrometry 10:1229−40

doi: 10.1016/S1044-0305(99)00104-X
[28]

Plaza P, Torres R, Usall J, Lamarca N, Viñas I. 2004. Evaluation of the potential of commercial post-harvest application of essential oils to control citrus decay. The Journal of Horticultural Science and Biotechnology 79(6):935−40

doi: 10.1080/14620316.2004.11511869
[29]

Yu D, Wang J, Shao X, Xu F, Wang H. 2015. Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea. Journal of Applied Microbiology 119(5):1253−62

doi: 10.1111/jam.12939
[30]

Liu Y, Na J, Safdar A, Shen Y, Sun Y, et al. 2024. Identification and characterization of Nigrospora Species and a novel species, Nigrospora anhuiensis, causing black leaf spot on rice and wild rice in the Anhui Province of China. Journal of Fungi 10:156

doi: 10.3390/jof10020156
[31]

Fitt B. 1990. Book review: introduction to plant disease epidemiology. Outlook on Agriculture 19(2):133

doi: 10.1177/003072709001900219
[32]

Ferreira DF. 2019. Sisvar: a computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics 37(4):529−35

doi: 10.28951/rbb.v37i4.450
[33]

Ferreira VRF, Brandão RM, Freitas MP, Saczk AA, Felix FS, et al. 2019. Colorimetric, electroanalytical and theoretical evaluation of the antioxidant activity of Syzygium aromaticum L., Origanum vulgare L., Mentha spicata L. and Eremanthus erythropappus M. essential oils, and their major constituents. New Journal of Chemistry 43(20):7653−62

doi: 10.1039/C8NJ05893H
[34]

Tsoumani ES, Kosma IS, Badeka AV. 2022. Chemometric screening of oregano essential oil composition and properties for the identification of specific markers for geographical differentiation of cultivated Greek oregano. Sustainability 14(22):14762

doi: 10.3390/su142214762
[35]

Ilić Z, Stanojević L, Milenković L, Šunić L, Milenković A, et al. 2022. The yield, chemical composition, and antioxidant activities of essential oils from different plant parts of the wild and cultivated oregano (Origanum vulgare L.). Horticulturae 8(11):1042

doi: 10.3390/horticulturae8111042
[36]

Kaur K, Kaushal S, Rani R. 2019. Chemical composition, antioxidant and antifungal potential of clove (Syzygium aromaticum) essential oil, its major compound and its derivatives. Journal of Essential Oil Bearing Plants 22(5):1195−217

doi: 10.1080/0972060X.2019.1688689
[37]

Mostafa AAF, Yassin MT, Al-Askar AA, Al-Otibi FO. 2023. Phytochemical analysis, antiproliferative and antifungal activities of different Syzygium aromaticum solvent extracts. Journal of King Saud University - Science 35(1):102362

doi: 10.1016/j.jksus.2022.102362
[38]

Vinciguerra V, Rojas F, Tedesco V, Giusiano G, Angiolella L. 2019. Chemical characterization and antifungal activity of Origanum vulgare, Thymus vulgaris essential oils and carvacrol against Malassezia furfur. Natural Product Research 33(22):3273−77

doi: 10.1080/14786419.2018.1468325
[39]

Zhang J, Ma S, Du S, Chen S, Sun H. 2019. Antifungal activity of thymol and carvacrol against postharvest pathogens Botrytis cinerea. Journal of Food Science and Technology 56(5):2611−20

doi: 10.1007/s13197-019-03747-0
[40]

Requena R, Vargas M, Chiralt A. 2019. Eugenol and carvacrol migration from PHBV films and antibacterial action in different food matrices. Food Chemistry 277:38−45

doi: 10.1016/j.foodchem.2018.10.093
[41]

Konuk HB, Ergüden B. 2020. Phenolic–OH group is crucial for the antifungal activity of terpenoids via disruption of cell membrane integrity. Folia Microbiologica 65(4):775−83

doi: 10.1007/s12223-020-00787-4
[42]

Šimović M, Delaš F, Gradvol V, Kocevski D, Pavlović H. 2014. Antifungal effect of eugenol and carvacrol against foodborne pathogens Aspergillus carbonarius and Penicillium roqueforti in improving safety of fresh-cut watermelon. Journal of Intercultural Ethnopharmacology 3(3):91−96

doi: 10.5455/jice.20140503090524
[43]

Pei S, Liu R, Gao H, Chen H, Wu W, et al. 2020. Inhibitory effect and possible mechanism of carvacrol against Colletotrichum fructicola. Postharvest Biology and Technology 163:111126

doi: 10.1016/j.postharvbio.2020.111126
[44]

Zhao Y, Wang Q, Wu X, Jiang M, Jin H, et al. 2021. Unraveling the polypharmacology of a natural antifungal product, eugenol, against Rhizoctonia solani. Pest Management Science 77(7):3469−83

doi: 10.1002/ps.6400
[45]

Moghaddam M, Mehdizadeh L. 2020. Chemical composition and antifungal activity of essential oil of Thymus vulgaris grown in Iran against some plant pathogenic fungi. Journal of Essential Oil Bearing Plants 23(5):1072−83

doi: 10.1080/0972060X.2020.1843547
[46]

Alves M, Gonçalves MJ, Zuzarte M, Alves-Silva JM, Cavaleiro C, et al. 2019. Unveiling the antifungal potential of two iberian thyme essential oils: effect on C. albicans germ tube and preformed biofilms. Frontiers in Pharmacology 10:446

doi: 10.3389/fphar.2019.00446
[47]

Zhou X, Ma HH, Xiong SJ, Zhang LL, Zhu XD, et al. 2023. Evaluation of the inhibitory efficacy of eugenol against the pathogen of Fusarium wilt in ginger seedlings. Horticulturae 9(9):1024

doi: 10.3390/horticulturae9091024
[48]

dos Santos NST, Athayde Aguiar AJA, de Oliveira CEV, Veríssimo de Sales C, de Melo e Silva S, et al. 2012. Efficacy of the application of a coating composed of chitosan and Origanum vulgare L. essential oil to control Rhizopus stolonifer and Aspergillus niger in grapes (Vitis labrusca L.). Food Microbiology 32(2):345−53

doi: 10.1016/j.fm.2012.07.014
[49]

da Silva PPM, de Oliveira J, dos Mares Biazotto A, Parisi MM, da Glória EM, et al. 2020. Essential oils from Eucalyptus staigeriana F. Muell. ex Bailey and Eucalyptus urograndis W. Hill ex Maiden associated to carboxymethylcellulose coating for the control of Botrytis cinerea Pers. Fr. and Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. in strawberries. Industrial Crops and Products 156:112884

doi: 10.1016/j.indcrop.2020.112884
[50]

da Silva BD, Bernardes PC, Pinheiro PF, Fantuzzi E, Roberto CD. 2021. Chemical composition, extraction sources and action mechanisms of essential oils: natural preservative and limitations of use in meat products. Meat Science 176:108463

doi: 10.1016/j.meatsci.2021.108463
[51]

Choi WS, Singh S, Lee YS. 2016. Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of 'Formosa' plum (Prunus salicina L.). LWT 70:213−22

doi: 10.1016/j.lwt.2016.02.036
[52]

Duarte LGR, Ferreira NCA, Fiocco ACTR, Picone CSF. 2023. Lactoferrin-Chitosan-TPP Nanoparticles: antibacterial action and extension of strawberry shelf-life. Food and Bioprocess Technology 16:135−48

doi: 10.1007/s11947-022-02927-9
[53]

Bhavaniramya S, Vishnupriya S, Al-Aboody MS, Vijayakumar R, Baskaran D. 2019. Role of essential oils in food safety: antimicrobial and antioxidant applications. Grain & Oil Science and Technology 2(2):49−55

doi: 10.1016/j.gaost.2019.03.001
[54]

de Oliveira KÁR, da Conceição ML, de Oliveira SPA, dos Santos Lima M, de Sousa Galvão M, et al. 2020. Postharvest quality improvements in mango cultivar Tommy Atkins by chitosan coating with Mentha piperita L. essential oil. Journal of Horticultural Science and Biotechnology 95(2):260−72

doi: 10.1080/14620316.2019.1664338
[55]

González-Estrada RR, Chalier P, Ragazzo-Sánchez JA, Konuk D, Calderón-Santoyo M. 2017. Antimicrobial soy protein based coatings: application to Persian lime (Citrus latifolia Tanaka) for protection and preservation. Postharvest Biology and Technology 132:138−44

doi: 10.1016/j.postharvbio.2017.06.005
[56]

Tinebra I, Passafiume R, Scuderi D, Pirrone A, Gaglio R, et al. 2022. Effects of tray-drying on the physicochemical, microbiological, proximate, and sensory properties of white- and red-fleshed loquat (Eriobotrya Japonica Lindl.) fruit. Agronomy 12(2):540

doi: 10.3390/agronomy12020540
[57]

Prakash Maran J, Sivakumar V, Thirugnanasambandham K, Sridhar R. 2013. Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L. Alexandria Engineering Journal 52(3):507−16

doi: 10.1016/j.aej.2013.06.007
[58]

Duarte LGR, Alencar WMP, Iacuzio R, Silva NCC, Picone CSF. 2022. Synthesis, characterization and application of antibacterial lactoferrin nanoparticles. Current Research in Food Science 5:642−52

doi: 10.1016/j.crfs.2022.03.009
[59]

dos Passos Braga S, Magnani M, Madruga MS, de Souza Galvão M, de Medeiros LL, et al. 2020. Characterization of edible coatings formulated with chitosan and Mentha essential oils and their use to preserve papaya (Carica papaya L.). Innovative Food Science & Emerging Technologies 65:102472

doi: 10.1016/j.ifset.2020.102472
[60]

Culmone A, Mirabile G, Tinebra I, Michelozzi M, Carrubba A, et al. 2023. Hydrolate and EO application to reduce decay of Carica papaya during storage. Horticulturae 9(2):204

doi: 10.3390/horticulturae9020204