[1]

Kisvarga S, Horotán K, Ahmad Wani M, Orlóci L. 2023. Plant responses to global climate change and urbanization: implications for sustainable urban landscapes. Horticulturae 9(9):1051

doi: 10.3390/horticulturae9091051
[2]

Ahmad Wani M, Din A, Nazki IT, Rehman TU, Al-Khayri JM, et al. 2023. Navigating the future: exploring technological advancements and emerging trends in the sustainable ornamental industry. Frontiers in Environmental Science 11:1188643

doi: 10.3389/fenvs.2023.1188643
[3]

Mekapogu M, Kwon OK, Song HY, Jung JA. 2022. Towards the improvement of ornamental attributes in Chrysanthemum: recent progress in biotechnological advances. International Journal of Molecular Sciences 23(20):12284

doi: 10.3390/ijms232012284
[4]

Lamichhane S, Thapa S. 2022. Advances from conventional to modern plant breeding methodologies. Plant Breeding and Biotechnology 10:1−14

doi: 10.9787/pbb.2022.10.1.1
[5]

Tang J, Ye J, Liu P, Wang S, Chen F, et al. 2023. Ornamental plant gene editing: past, present and future. Ornamental Plant Research 3:6

doi: 10.48130/opr-2023-0006
[6]

Jin C, Dong L, Wei C, Ahmad Wani M, Yang C, et al. 2023. Creating novel ornamentals via new strategies in the era of genome editing. Frontiers in Plant Science 14:1142866

doi: 10.3389/fpls.2023.1142866
[7]

Carroll D. 2011. Genome engineering with zinc-finger nucleases. Genetics 188:773−82

doi: 10.1534/genetics.111.131433
[8]

Sun Y, Zhang X, Wu C, He Y, Ma Y, et al. 2016. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant 9:628−31

doi: 10.1016/j.molp.2016.01.001
[9]

Hilscher J, Bürstmayr H, Stoger E. 2017. Targeted modification of plant genomes for precision crop breeding. Biotechnology Journal 12:1600173

doi: 10.1002/biot.201600173
[10]

Zhang K, Raboanatahiry N, Zhu B, Li M. 2017. Progress in genome editing technology and its application in plants. Frontiers in Plant Science 8:177

doi: 10.3389/fpls.2017.00177
[11]

Ahn CH, Ramya M, An HR, Park PM, Kim YJ, et al. 2020. Progress and challenges in the improvement of ornamental plants by genome editing. Plants 9(6):687

doi: 10.3390/plants9060687
[12]

Karlson CKS, Mohd-Noor SN, Nolte N, Tan BC. 2021. CRISPR/dCas9-based systems: mechanisms and applications in plant sciences. Plants 10(10):2055

doi: 10.3390/plants10102055
[13]

Li C, Brant E, Budak H, Zhang B. 2021. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University-Science B 22:253−84

doi: 10.1631/jzus.B2100009
[14]

Chen F. 2022. Plant genomes: toward goals of decoding both complex and complete sequences. Ornamental Plant Research 2:24

doi: 10.48130/opr-2022-0024
[15]

Zheng T, Li P, Li L, Zhang Q. 2021. Research advances in and prospects of ornamental plant genomics. Horticulture Research 8:65

doi: 10.1038/s41438-021-00499-x
[16]

Li M, Wen Z, Meng J, Cheng T, Zhang Q, et al. 2022. The genomics of ornamental plants: current status and opportunities. Ornamental Plant Research 2:6

doi: 10.48130/opr-2022-0006
[17]

Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, et al. 2016. The amaranth genome: genome, transcriptome, and physical map assembly. The Plant Genome 9:plantgenome2015.07.0062

doi: 10.3835/plantgenome2015.07.0062
[18]

Li M, Zhang D, Gao Q, Luo Y, Zhang H, et al. 2019. Genome structure and evolution of Antirrhinum majus L. Nature Plants 5:174−83

doi: 10.1038/s41477-018-0349-9
[19]

Hori K, Yamada Y, Purwanto R, Minakuchi Y, Toyoda A, et al. 2018. Mining of the uncharacterized cytochrome P450 genes involved in alkaloid biosynthesis in California poppy using a draft genome sequence. Plant and Cell Physiology 59(2):222−33

doi: 10.1093/pcp/pcx210
[20]

Li F, Gao Y, Jin C, Wen X, Geng H, et al. 2022. The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity. Horticulture Research 9:uhac176

doi: 10.1093/hr/uhac176
[21]

Badouin H, Gouzy J, Grassa CJ, Murat F, Evan Staton S, et al. 2017. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546:148−52

doi: 10.1038/nature22380
[22]

Hoshino A, Jayakumar V, Nitasaka E, Toyoda A, Noguchi H, et al. 2016. Genome sequence and analysis of the Japanese morning glory Ipomoea nil. Nature Communications 7:13295

doi: 10.1038/ncomms13295
[23]

Hellsten U, Wright KM, Jenkins J, Shu S, Yuan Y, et al. 2013. Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. Proceedings of the National Academy of Sciences of the United States of America 110:19478−82

doi: 10.1073/pnas.1319032110
[24]

Griesmann M, Chang Y, Liu X, Song Y, Haberer G, et al. 2018. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361:eaat1743

doi: 10.1126/science.aat1743
[25]

Bombarely A, Moser M, Amrad A, Bao M, Bapaume L, et al. 2016. Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants 2:16074

doi: 10.1038/nplants.2016.74
[26]

Dong AX, Xin HB, Li ZJ, Liu H, Sun YQ, et al. 2018. High-quality assembly of the reference genome for scarlet sage, Salvia splendens, an economically important ornamental plant. GigaScience 7:giy068

doi: 10.1093/gigascience/giy068
[27]

Cheng S, van den Bergh E, Zeng P, Zhong X, Xu J, et al. 2013. The Tarenaya hassleriana genome provides insight into reproductive trait and genome evolution of crucifers. The Plant Cell 25:2813−30

doi: 10.1105/tpc.113.113480
[28]

Wang Y, Fan G, Liu Y, Sun F, Shi C, et al. 2013. The sacred Lotus genome provides insights into the evolution of flowering plants. The Plant Journal 76:557−67

doi: 10.1111/tpj.12313
[29]

Zhang L, Chen F, Zhang X, Li Z, Zhao Y, et al. 2020. The water lily genome and the early evolution of flowering plants. Nature 577:79−84

doi: 10.1038/s41586-019-1852-5
[30]

Hirakawa H, Sumitomo K, Hisamatsu T, Nagano S, Shirasawa K, et al. 2019. De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis. DNA Research 26:195−203

doi: 10.1093/dnares/dsy048
[31]

Song C, Liu Y, Song A, Dong G, Zhao H, et al. 2018. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of Chrysanthemum flowers and medicinal traits. Molecular Plant 11:1482−91

doi: 10.1016/j.molp.2018.10.003
[32]

Wen X, Li J, Wang L, Lu C, Gao Q, et al. 2022. The Chrysanthemum lavandulifolium genome and the molecular mechanism underlying diverse Capitulum types. Horticulture Research 9:uhab022

doi: 10.1093/hr/uhab022
[33]

Zhang X, Lin S, Peng D, Wu Q, Liao X, et al. 2022. Integrated multi-omic data and analyses reveal the pathways underlying key ornamental traits in carnation flowers. Plant Biotechnology Journal 20(6):1182−96

doi: 10.1111/pbi.13801
[34]

Liang Y, Li F, Gao Q, Jin C, Dong L, et al. 2022. The genome of Eustoma grandiflorum reveals the whole-genome triplication event contributing to ornamental traits in cultivated Lisianthus. Plant Biotechnology Journal 20:1856−58

doi: 10.1111/pbi.13899
[35]

Kim J, Kang SH, Park SG, Yang TJ, Lee Y, et al. 2020. Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant. Horticulture Research 7:112

doi: 10.1038/s41438-020-0329-x
[36]

Feng C, Wang J, Wu L, Kong H, Yang L, et al. 2020. The genome of a cave plant, Primulina huaijiensis, provides insights into adaptation to limestone Karst habitats. New Phytologist 227(4):1249−63

doi: 10.1111/nph.16588
[37]

Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, et al. 2018. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nature Plants 4:473−84

doi: 10.1038/s41477-018-0166-1
[38]

Nakamura N, Hirakawa H, Sato S, Otagaki S, Matsumoto S, et al. 2018. Genome structure of Rosa multiflora, a wild ancestor of cultivated roses. DNA Research 25:113−21

doi: 10.1093/dnares/dsx042
[39]

Chen F, Su L, Hu S, Xue JY, Liu H, et al. 2021. A chromosome-level genome assembly of rugged rose (Rosa rugosa) provides insights into its evolution, ecology, and floral characteristics. Horticulture Research 8:141

doi: 10.1038/s41438-021-00594-z
[40]

Zhong M, Jiang X, Yang G, Cui W, Suo Z, et al. 2021. Rose without prickle: genomic insights linked to moisture adaptation. National Science Review 8:nwab092

doi: 10.1093/nsr/nwab092
[41]

Lu M, An H, Li L. 2016. Genome survey sequencing for the characterization of the genetic background of Rosa roxburghii tratt and leaf ascorbate metabolism genes. PLoS One 11:e0147530

doi: 10.1371/journal.pone.0147530
[42]

Copetti D, Búrquez A, Bustamante E, Charboneau JLM, Childs KL, et al. 2017. Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti. Proceedings of the National Academy of Sciences of the United States of America 114(45):12003−08

doi: 10.1073/pnas.1706367114
[43]

Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, et al. 2015. A synteny-based draft genome sequence of the forage grass Lolium perenne. The Plant Journal 84(4):816−26

doi: 10.1111/tpj.13037
[44]

De Vega JJ, Ayling S, Hegarty M, Kudrna D, Goicoechea JL, et al. 2015. Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Scientific Reports 5:17394

doi: 10.1038/srep17394
[45]

Hirakawa H, Kaur P, Shirasawa K, Nichols P, Nagano S, et al. 2016. Draft genome sequence of subterranean clover, a reference for genus Trifolium. Scientific Reports 6:30358

doi: 10.1038/srep30358
[46]

Tanaka H, Hirakawa H, Kosugi S, Nakayama S, Ono A, et al. 2016. Sequencing and comparative analyses of the genomes of zoysiagrasses. DNA Research 23(2):171−80

doi: 10.1093/dnares/dsw006
[47]

VanBuren R, Wai CM, Ou S, Pardo J, Bryant D, et al. 2018. Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla. Nature Communications 9:13

doi: 10.1038/s41467-017-02546-5
[48]

Li SF, Wang J, Dong R, Zhu HW, Lan LN, et al. 2020. Chromosome-level genome assembly, annotation and evolutionary analysis of the ornamental plant Asparagus setaceus. Horticulture Research 7:48

doi: 10.1038/s41438-020-0271-y
[49]

Butts CT, Bierma JC, Martin RW. 2016. Novel proteases from the genome of the carnivorous plant Drosera capensis: structural prediction and comparative analysis. Proteins: Structure, Function, and Bioinformatics 84:1517−33

doi: 10.1002/prot.25095
[50]

Palfalvi G, Hackl T, Terhoeven N, Shibata TF, Nishiyama T, et al. 2020. Genomes of the Venus flytrap and close relatives unveil the roots of plant carnivory. Current Biology 30(12):2312−2320.e5

doi: 10.1016/j.cub.2020.04.051
[51]

Xiao L, Yang G, Zhang L, Yang X, Zhao S, et al. 2015. The resurrection genome of Boea hygrometrica: a blueprint for survival of dehydration. Proceedings of the National Academy of Sciences of the United States of America 112(18):5833−37

doi: 10.1073/pnas.1505811112
[52]

Kellner F, Kim J, Clavijo BJ, Hamilton JP, Childs KL, et al. 2015. Genome-guided investigation of plant natural product biosynthesis. The Plant Journal 82(4):680−92

doi: 10.1111/tpj.12827
[53]

Nowak MD, Russo G, Schlapbach R, Huu CN, Lenhard M, et al. 2015. The draft genome of Primula veris yields insights into the molecular basis of heterostyly. Genome Biology 16:12

doi: 10.1186/s13059-014-0567-z
[54]

Fu Y, Li L, Hao S, Guan R, Fan G, et al. 2017. Draft genome sequence of the Tibetan medicinal herb Rhodiola crenulata. GigaScience 6:gix033

doi: 10.1093/gigascience/gix033
[55]

Yamashiro T, Shiraishi A, Satake H, Nakayama K. 2019. Draft genome of Tanacetum cinerariifolium, the natural source of mosquito coil. Scientific Reports 9:18249

doi: 10.1038/s41598-019-54815-6
[56]

Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY, et al. 2017. The Apostasia genome and the evolution of orchids. Nature 549:379−83

doi: 10.1038/nature23897
[57]

Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, et al. 2016. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific Reports 6:19029

doi: 10.1038/srep19029
[58]

Yan L, Wang X, Liu H, Tian Y, Lian J, et al. 2015. The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Molecular Plant 8:922−34

doi: 10.1016/j.molp.2014.12.011
[59]

Chao YT, Chen WC, Chen CY, Ho HY, Yeh CH, et al. 2018. Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnology Journal 16:2027−41

doi: 10.1111/pbi.12936
[60]

Cai J, Liu X, Vanneste K, Proost S, Tsai WC, et al. 2015. The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics 47:65−72

doi: 10.1038/ng.3149
[61]

Ai Y, Li Z, Sun WH, Chen J, Zhang D, et al. 2021. The Cymbidium genome reveals the evolution of unique morphological traits. Horticulture Research 8:255

doi: 10.1038/s41438-021-00683-z
[62]

Sun Y, Chen GZ, Huang J, Liu DK, Xue F, et al. 2021. The Cymbidium goeringii genome provides insight into organ development and adaptive evolution in orchids. Ornamental Plant Research 1:10

doi: 10.48130/opr-2021-0010
[63]

Yang X, Hu R, Yin H, Jenkins J, Shu S, et al. 2017. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature Communications 8:1899

doi: 10.1038/s41467-017-01491-7
[64]

Cocker JM, Wright J, Li J, Swarbreck D, Dyer S, et al. 2018. Primula vulgaris (primrose) genome assembly, annotation and gene expression, with comparative genomics on the heterostyly supergene. Scientific Reports 8:17942

doi: 10.1038/s41598-018-36304-4
[65]

Yang FS, Nie S, Liu H, Shi TL, Tian XC, et al. 2020. Chromosome-level genome assembly of a parent species of widely cultivated azaleas. Nature Communications 11:5269

doi: 10.1038/s41467-020-18771-4
[66]

Wai CM, Weise SE, Ozersky P, Mockler TC, Michael TP, et al. 2019. Time of day and network reprogramming during drought induced CAM photosynthesis in Sedum album. PLoS Genetics 15:e1008209

doi: 10.1371/journal.pgen.1008209
[67]

Shang J, Tian J, Cheng H, Yan Q, Li L, et al. 2020. The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biology 21:200

doi: 10.1186/s13059-020-02088-y
[68]

Lv Q, Qiu J, Liu J, Li Z, Zhang W, et al. 2020. The Chimonanthus salicifolius genome provides insight into magnoliid evolution and flavonoid biosynthesis. The Plant Journal 103:1910−23

doi: 10.1111/tpj.14874
[69]

Li LF, Cushman SA, He YX, Li Y. 2020. Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping Forsythia. Horticulture Research 7:130

doi: 10.1038/s41438-020-00352-7
[70]

Xu Z, Pu X, Gao R, Demurtas OC, Fleck SJ, et al. 2020. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biology 18:63

doi: 10.1186/s12915-020-00795-3
[71]

Kim YM, Kim S, Koo N, Shin AY, Yeom SI, et al. 2017. Genome analysis ofHibiscus syriacus provides insights of polyploidization and indeterminate flowering in woody plants. DNA Research 24:71−80

doi: 10.1093/dnares/dsw049
[72]

Xu M, Gao Q, Jiang M, Wang W, Hu J, et al. 2023. A novel genome sequence ofJasminum sambac helps uncover the molecular mechanism underlying the accumulation of jasmonates. Journal of Experimental Botany 74:1275−90

doi: 10.1093/jxb/erac464
[73]

Malli RPN, Adal AM, Sarker LS, Liang P, Mahmoud SS. 2019. De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production. Planta 249:251−56

doi: 10.1007/s00425-018-3012-9
[74]

Yang X, Yue Y, Li H, Ding W, Chen G, et al. 2018. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans. Horticulture Research 5:72

doi: 10.1038/s41438-018-0108-0
[75]

Lv S, Cheng S, Wang Z, Li S, Jin X, et al. 2020. Draft genome of the famous ornamental plant Paeonia suffruticosa. Ecology and Evolution 10:4518−30

doi: 10.1002/ece3.5965
[76]

Zhang L, Xu P, Cai Y, Ma L, Li S, et al. 2017. The draft genome assembly of Rhododendron delavayi Franch. var. delavayi. GigaScience 6(10):gix076

doi: 10.1093/gigascience/gix076
[77]

Soza VL, Lindsley D, Waalkes A, Ramage E, Patwardhan RP, et al. 2019. The Rhododendron genome and chromosomal organization provide insight into shared whole-genome duplications across the heath family (Ericaceae). Genome Biology and Evolution 11:3353−71

doi: 10.1093/gbe/evz245
[78]

Ma H, Liu Y, Liu D, Sun W, Liu X, et al. 2021. Chromosome-level genome assembly and population genetic analysis of a critically endangered Rhododendron provide insights into its conservation. The Plant Journal 107(5):1533−45

doi: 10.1111/tpj.15399
[79]

Wang X, Gao Y, Wu X, Wen X, Li D, et al. 2021. High-quality evergreen azalea genome reveals tandem duplication-facilitated low-altitude adaptability and floral scent evolution. Plant Biotechnology Journal 19(12):2544−60

doi: 10.1111/pbi.13680
[80]

Gao Y, Wang H, Liu C, Chu H, Dai D, et al. 2018. De novo genome assembly of the red silk cotton tree (Bombax ceiba). GigaScience 7:giy051

doi: 10.1093/gigascience/giy051
[81]

Zhao D, Hamilton JP, Pham GM, Crisovan E, Wiegert-Rininger K, et al. 2017. De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. GigaScience 6:gix065

doi: 10.1093/gigascience/gix065
[82]

Ye G, Zhang H, Chen B, Nie S, Liu H, et al. 2019. De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth. The Plant Journal 97:779−94

doi: 10.1111/tpj.14159
[83]

Yi XG, Yu XQ, Chen J, Zhang M, Liu SW, et al. 2020. The genome of Chinese flowering cherry (Cerasus serrulata) provides new insights into Cerasus species. Horticulture Research 7:165

doi: 10.1038/s41438-020-00382-1
[84]

Shirasawa K, Esumi T, Hirakawa H, Tanaka H, Itai A, et al. 2019. Phased genome sequence of an interspecific hybrid flowering cherry, 'Somei-Yoshino' (Cerasus × yedoensis). DNA Research 26:379−89

doi: 10.1093/dnares/dsz016
[85]

Sollars ESA, Harper AL, Kelly LJ, Sambles CM, Ramirez-Gonzalez RH, et al. 2017. Genome sequence and genetic diversity of European ash trees. Nature 541:212−16

doi: 10.1038/nature20786
[86]

Guan R, Zhao Y, Zhang H, Fan G, Liu X, et al. 2016. Draft genome of the living fossil Ginkgo biloba. GigaScience 5:s13742-016-0154-1

doi: 10.1186/s13742-016-0154-1
[87]

Silva OB Junior, Grattapaglia D, Novaes E, Collevatti RG. 2018. Genome assembly of the Pink Ipê (Handroanthus impetiginosus, Bignoniaceae), a highly valued, ecologically keystone Neotropical timber forest tree. GigaScience 7:gix125

doi: 10.1093/gigascience/gix125
[88]

Zhang Q, Zhang H, Sun L, Fan G, Ye M, et al. 2018. The genetic architecture of floral traits in the woody plant Prunus mume. Nature Communications 9:1702

doi: 10.1038/s41467-018-04093-z
[89]

Baek S, Choi K, Kim GB, Yu HJ, Cho A, et al. 2018. Draft genome sequence of wild Prunus yedoensis reveals massive inter-specific hybridization between sympatric flowering cherries. Genome Biology 19:127

doi: 10.1186/s13059-018-1497-y
[90]

Chen J, Hao Z, Guang X, Zhao C, Wang P, et al. 2019. Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation. Nature Plants 5:18−25

doi: 10.1038/s41477-018-0323-6
[91]

Wang M, Zhang L, Wang Z. 2021. Chromosomal-level reference genome of the neotropical tree Jacaranda mimosifolia D. Don. Genome Biology and Evolution 13:evab094

doi: 10.1093/gbe/evab094
[92]

Liu H, Wang Z, Liu Y, Wei Y, Hu Z, et al. 2024. Applications of CRISPR/Cas9 technology in ornamental plants. Plant Molecular Biology Reporter 42:193−200

doi: 10.1007/s11105-023-01417-2
[93]

Hwarari D, Radani Y, Ke Y, Chen J, Yang L. 2024. CRISPR/Cas genome editing in plants: mechanisms, applications, and overcoming bottlenecks. Functional & Integrative Genomics 24:50

doi: 10.1007/s10142-024-01314-1
[94]

Din A, Qadri ZA, Wani MA, Iqbal S, Malik SA, et al. 2023. Comparative analysis of physical and chemical mutagenesis in Chrysanthemum cv. 'candid': assessing genetic variation and breeding potential. ACS Omega 8:43836−49

doi: 10.1021/acsomega.3c05723
[95]

Din A, Qadri ZA, Ahmad Wani M, Banday N, Iqbal S, et al. 2023. Enhancing flower color diversity in Chrysanthemum cv. "candid" through ethyl methane sulfonate mutagenesis: a promising approach for ornamental crop improvement. ACS Agricultural Science & Technology 3(11):1004−13

doi: 10.1021/acsagscitech.3c00200
[96]

Lloyd AM, Walbot V, Davis RW. 1992. Arabidopsis and Nicotiana anthocyanin production activated by maize regulatorsRandC1. Science 258:1773−75

doi: 10.1126/science.1465611
[97]

Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, et al. 1993. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366:276−79

doi: 10.1038/366276a0
[98]

de Vetten N, ter Horst J, van Schaik HP, de Boer A, Mol J, et al. 1999. A cytochrome b5 is required for full activity of flavonoid 3',5'-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. Proceedings of the National Academy of Sciences of the United States of America 96(2):778−83

doi: 10.1073/pnas.96.2.778
[99]

Mol J, Cornish E, Mason J, Koes R. 1999. Novel coloured flowers. Current Opinion in Biotechnology 10:198−201

doi: 10.1016/S0958-1669(99)80035-4
[100]

Aida R, Yoshida K, Kondo T, Kishimoto S, Shibata M. 2000. Copigmentation gives bluer flowers on transgenic Torenia plants with the antisense dihydroflavonol-4-reductase gene. Plant Science 160:49−56

doi: 10.1016/S0168-9452(00)00364-2
[101]

Ueyama Y, Suzuki KI, Fukuchi-Mizutani M, Fukui Y, Miyazaki K, et al. 2002. Molecular and biochemical characterization of to renia flavonoid 3'-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Science 163:253−63

doi: 10.1016/S0168-9452(02)00098-5
[102]

Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, et al. 2017. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Science Advances 3:e1602785

doi: 10.1126/sciadv.1602785
[103]

Dudareva N, Klempien A, Muhlemann JK, Kaplan I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198:16−32

doi: 10.1111/nph.12145
[104]

Ben Zvi MM, Shklarman E, Masci T, Kalev H, Debener T, et al. 2012. PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytologist 195:335−45

doi: 10.1111/j.1469-8137.2012.04161.x
[105]

Knudsen JT, Tollsten L, Bergström LG. 1993. Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253−80

doi: 10.1016/0031-9422(93)85502-I
[106]

Dudareva N, Pichersky E. 2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiology 122:627−33

doi: 10.1104/pp.122.3.627
[107]

Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, et al. 2003. (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. The Plant Cell 15:1227−41

doi: 10.1105/tpc.011015
[108]

Lücker J, Bouwmeester HJ, Schwab W, Blaas J, van der Plas LHW, et al. 2001. Expression of Clarkia S-linalool synthase in transgenic Petunia plants results in the accumulation of S-linalyl-β-D-glucopyranoside. The Plant Journal 27:315−24

doi: 10.1046/j.1365-313x.2001.01097.x
[109]

Aranovich D, Lewinsohn E, Zaccai M. 2007. Post-harvest enhancement of aroma in transgenic lisianthus (Eustoma grandiflorum) using the Clarkia breweri benzyl alcohol acetyltransferase (BEAT) gene. Postharvest Biology and Technology 43:255−60

doi: 10.1016/j.postharvbio.2006.09.001
[110]

Yue Y, Yu R, Fan Y. 2015. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genomics 16:470

doi: 10.1186/s12864-015-1653-7
[111]

Verdonk JC, Haring MA, van Tunen AJ, Schuurink RC. 2005. ODORANT 1 regulates fragrance biosynthesis in Petunia flowers. The Plant Cell 17(5):1612−24

doi: 10.1105/tpc.104.028837
[112]

Spitzer-Rimon B, Marhevka E, Barkai O, Marton I, Edelbaum O, et al. 2010. EOBII a gene encoding a flower-specific regulator of phenylpropanoid volatiles' biosynthesis in Petunia. The Plant Cell 22(6):1961−76

doi: 10.1105/tpc.109.067280
[113]

Lozano-Juste J, Cutler SR. 2014. Plant genome engineering in full bloom. Trends in Plant Science 19:284−87

doi: 10.1016/j.tplants.2014.02.014
[114]

Liang Z, Zhang K, Chen K, Gao C. 2014. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/cas system. Journal of Genetics and Genomics 41:63−68

doi: 10.1016/j.jgg.2013.12.001
[115]

Ma H, Tu LC, Naseri A, Huisman M, Zhang S, et al. 2016. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nature Biotechnology 34:528−30

doi: 10.1038/nbt.3526
[116]

Jia H, Wang N. 2014. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806

doi: 10.1371/journal.pone.0093806
[117]

Cho SW, Kim S, Kim JM, Kim JS. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology 31:230−32

doi: 10.1038/nbt.2507
[118]

Hsu PD, Scott DA, Weinstein JA, Ann Ran F, Konermann S, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology 31:827−32

doi: 10.1038/nbt.2647
[119]

Vanyushin BF, Ashapkin VV. 2011. DNA methylation in higher plants: past, present and future. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1809(8):360−68

doi: 10.1016/j.bbagrm.2011.04.006
[120]

Miao J, Guo D, Zhang J, Huang Q, Qin G, et al. 2013. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research 23(10):1233−36

doi: 10.1038/cr.2013.123
[121]

Li JF, Norville JE, Aach J, McCormack M, Zhang D, et al. 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31(8):688−91

doi: 10.1038/nbt.2654
[122]

Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N. 2016. The CRISPR/Cas genome-editing tool: application in improvement of crops. Frontiers in Plant Science 7:506

doi: 10.3389/fpls.2016.00506
[123]

Zhang F, Wen Y, Guo X. 2014. CRISPR/Cas9 for genome editing: progress, implications and challenges. Human Molecular Genetics 23:R40−R46

doi: 10.1093/hmg/ddu125
[124]

Ahmad Wani M, Nazki IT, Din A, Iqbal S, Wani SA, et al. 2018. Floriculture sustainability initiative: the dawn of new era. In Sustainable Agriculture Reviews 27, ed. Lichtfouse E. Cham: Springer. Volume 27. pp. 91−127. doi: 10.1007/978-3-319-75190-0_4

[125]

Abdul Aziz M, Masmoudi K. 2025. Molecular breakthroughs in modern plant breeding techniques. Horticultural Plant Journal 11:15−41

doi: 10.1016/j.hpj.2024.01.004
[126]

Kishi-Kaboshi M, Aida R, Sasaki K. 2017. Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant and Cell Physiology 58(2):216−26

doi: 10.1093/pcp/pcw222
[127]

Kui L, Chen H, Zhang W, He S, Xiong Z, et al. 2017. Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale. Frontiers in Plant Science 7:2036

doi: 10.3389/fpls.2016.02036
[128]

Tong CG, Wu FH, Yuan YH, Chen YR, Lin CS. 2020. High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes. Plant Biotechnology Journal 18:889−91

doi: 10.1111/pbi.13264
[129]

Yan R, Wang Z, Ren Y, Li H, Liu N, et al. 2019. Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum white heaven. International Journal of Molecular Sciences 20:2920

doi: 10.3390/ijms20122920
[130]

Abdulla MF, Mostafa K, Kavas M. 2024. CRISPR/Cas9-mediated mutagenesis of FT/TFL1 in petunia improves plant architecture and early flowering. Plant Molecular Biology 114(3):69

doi: 10.1007/s11103-024-01454-9
[131]

Nishihara M, Higuchi A, Watanabe A, Tasaki K. 2018. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biology 18:331

doi: 10.1186/s12870-018-1539-3
[132]

Watanabe K, Kobayashi A, Endo M, Sage-Ono K, Toki S, et al. 2017. CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Scientific Reports 7:10028

doi: 10.1038/s41598-017-10715-1
[133]

Li B, Cui G, Shen G, Zhan Z, Huang L, et al. 2017. Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Scientific Reports 7:43320

doi: 10.1038/srep43320
[134]

Yu J, Tu L, Subburaj S, Bae S, Lee GJ. 2021. Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. Plant Cell Reports 40:1037−45

doi: 10.1007/s00299-020-02593-1
[135]

Watanabe K, Oda-Yamamizo C, Sage-Ono K, Ohmiya A, Ono M. 2018. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research 27:25−38

doi: 10.1007/s11248-017-0051-0
[136]

Tasaki K, Yoshida M, Nakajima M, Higuchi A, Watanabe A, et al. 2020. Molecular characterization of an anthocyanin-related glutathione S-transferase gene in Japanese gentian with the CRISPR/Cas9 system. BMC Plant Biology 20:370

doi: 10.1186/s12870-020-02565-3
[137]

Xu J, Kang BC, Naing AHN, Bae SJ, Kim JS, et al. 2020. CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity. Plant Biotechnology Journal 18:287−97

doi: 10.1111/pbi.13197
[138]

Shibuya K, Watanabe K, Ono M. 2018. CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory. Plant Physiology and Biochemistry 131:53−57

doi: 10.1016/j.plaphy.2018.04.036
[139]

Wang C, Li Y, Wang N, Yu Q, Li Y, et al. 2023. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida). Journal of Integrative Plant Biology 65:895−99

doi: 10.1111/jipb.13421
[140]

Adedeji OS, Naing AH, Kang H, Xu J, Chung MY, et al. 2024. Editing of the ethylene biosynthesis gene in carnation using CRISPR-Cas9 ribonucleoprotein complex. Plant Methods 20:20

doi: 10.1186/s13007-024-01143-0
[141]

Holme IB, Ingvardsen CR, Dionisio G, Podzimska-Sroka D, Kristiansen K, et al. 2024. CRISPR/Cas9-mediated mutation of Eil1 transcription factor genes affects exogenous ethylene tolerance and early flower senescence in Campanula portenschlagiana. Plant Biotechnology Journal 22(2):484−96

doi: 10.1111/pbi.14200
[142]

Wang L, Wang L, Tan Q, Fan Q, Zhu H, et al. 2016. Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Frontiers in Plant Science 7:1333

doi: 10.3389/fpls.2016.01333
[143]

Subburaj S, Chung SJ, Lee C, Ryu SM, Kim DH, et al. 2016. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Reports 35(7):1535−44

doi: 10.1007/s00299-016-1937-7
[144]

Zhang B, Yang X, Yang C, Li M, Guo Y. 2016. Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia. Scientific Reports 6:20315

doi: 10.1038/srep20315
[145]

Sun L, Kao T. 2018. CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata. Plant Reproduction 31:129−43

doi: 10.1007/s00497-017-0314-1
[146]

Chen Q, Zhang X, Jin R, Mao H. 2024. Establishment of a CRISPR/Cas9 gene-editing system for Chrysanthemum morifolium. Ornamental Plant Research 4:e014

doi: 10.48130/opr-0024-0012
[147]

Chen K, Liu H, Lou Q, Liu Y. 2017. Ectopic expression of the grape hyacinth (Muscari armeniacum) R2R3-MYB transcription factor gene, MaAN2, induces anthocyanin accumulation in tobacco. Frontiers in Plant Science 8:965

doi: 10.3389/fpls.2017.00965
[148]

Liu F, Hu L, Cai Y, Lin H, Liu J, et al. 2016. Molecular characterization and functional analysis of two Petunia PhEILs. Frontiers in Plant Science 7:1606

doi: 10.3389/fpls.2016.01606
[149]

Wada N, Ueta R, Osakabe Y, Osakabe K. 2020. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biology 20:234

doi: 10.1186/s12870-020-02385-5
[150]

Kishi-Kaboshi M, Aida R, Sasaki K. 2019. Parsley ubiquitin promoter displays higher activity than the CaMV 35S promoter and the Chrysanthemum actin 2 promoter for productive, constitutive, and durable expression of a transgene in Chrysanthemum morifolium. Breeding Science 69(3):536−44

doi: 10.1270/jsbbs.19036
[151]

Chib S, Thangaraj A, Kaul S, Dhar MK, Kaul T. 2020. Development of a system for efficient callus production, somatic embryogenesis and gene editing using CRISPR/Cas9 in Saffron (Crocus sativus L.).Plant Methods 16:47

doi: 10.1186/s13007-020-00589-2
[152]

Nitarska D, Boehm R, Debener T, Lucaciu RC, Halbwirth H. 2021. First genome edited poinsettias: targeted mutagenesis of flavonoid 3'-hydroxylase using CRISPR/Cas9 results in a colour shift. Plant Cell, Tissue and Organ Culture 147:49−60

doi: 10.1007/s11240-021-02103-5
[153]

Zhu C, Zheng X, Huang Y, Ye J, Chen P, et al. 2019. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii). Plant Biotechnology Journal 17:2199−210

doi: 10.1111/pbi.13132
[154]

Tasaki K, Higuchi A, Watanabe A, Sasaki N, Nishihara M. 2019. Effects of knocking out three anthocyanin modification genes on the blue pigmentation of gentian flowers. Scientific Reports 9:15831

doi: 10.1038/s41598-019-51808-3
[155]

Zhang B, Xu X, Huang R, Yang S, Li M, et al. 2021. CRISPR/Cas9-mediated targeted mutation reveals a role for AN4 rather than DPL in regulating venation formation in the Corolla tube of Petunia hybrida. Horticulture Research 8:116

doi: 10.1038/s41438-021-00555-6
[156]

Semiarti E, Nopitasari S, Setiawati Y, Lawrie MD, Purwantoro A, et al. 2020. Application of CRISPR/Cas9 genome editing system for molecular breeding of orchids. Indonesian Journal of Biotechnology 25:61

doi: 10.22146/ijbiotech.39485
[157]

Fan D, Liu T, Li C, Jiao B, Li S, et al. 2015. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Scientific Reports 5:12217

doi: 10.1038/srep12217
[158]

Sarmast MK. 2019. Transient expression-based CRISPR/Cas9 system for manipulation of tall fescue SGR gene. Journal of Plant Production Research 56:35−43

doi: 10.22069/jopp.2019.13945.2252
[159]

Su S, Xiao W, Guo W, Yao X, Xiao J, et al. 2017. The CYCLOIDEA–RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae). New Phytologist 215:1582−93

doi: 10.1111/nph.14673
[160]

Hilbeck A, McMillan JM, Meier M, Humbel A, Schläpfer-Miller J, et al. 2012. A controversy re-visited: is the coccinellid Adalia bipunctata adversely affected by bt toxins? Environmental Sciences Europe 24:10

doi: 10.1186/2190-4715-24-10
[161]

Mahfouz MM, Piatek A, Stewart CN Jr. 2014. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnology Journal 12(8):1006−14

doi: 10.1111/pbi.12256
[162]

Jones HD. 2015. Regulatory uncertainty over genome editing. Nature Plants 1:14011

doi: 10.1038/nplants.2014.11
[163]

Araki M, Ishii T. 2015. Towards social acceptance of plant breeding by genome editing. Trends in Plant Science 20(3):145−49

doi: 10.1016/j.tplants.2015.01.010
[164]

Purnhagen KP, Kok E, Kleter G, Schebesta H, Visser RGF, et al. 2018. The European Union Court's Advocate General's Opinion and new plant breeding techniques. Nature Biotechnology 36:573−75

doi: 10.1038/nbt.4174