[1]

Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

doi: 10.1016/j.cell.2016.08.029
[2]

Mohanta TK, Bashir T, Hashem A, Abd-Allah EF, Khan AL, et al. 2018. Early events in plant abiotic stress signaling: Interplay between calcium, reactive oxygen species and phytohormones. Journal of Plant Growth Regulation 37:1033−49

doi: 10.1007/s00344-018-9833-8
[3]

Lee HJ, Seo PJ. 2021. Ca2+ talyzing initial responses to environmental stresses. Trends in Plant Science 26:849−70

doi: 10.1016/j.tplants.2021.02.007
[4]

Kudla J, Becker D, Grill E, Hedrich R, Hippler M, et al. 2018. Advances and current challenges in calcium signaling. New Phytologist 218:414−31

doi: 10.1111/nph.14966
[5]

Ketehouli T, Quoc VHN, Dong J, Do H, Li X, et al. 2022. Overview of the roles of calcium sensors in plants' response to osmotic stress signalling. Functional Plant Biology 49:589−99

doi: 10.1071/FP22012
[6]

Bredow M, Monaghan J. 2022. Cross-kingdom regulation of calcium- and/or calmodulin-dependent protein kinases by phospho-switches that relieve autoinhibition. Current Opinion in Plant Biology 68:102251

doi: 10.1016/j.pbi.2022.102251
[7]

Shi S, Li S, Asim M, Mao J, Xu D, et al. 2018. The Arabidopsis calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. Journal of Experimental Botany 19:1900

doi: 10.3390/ijms19071900
[8]

Yip Delormel T, Boudsocq M. 2019. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytologist 224:585−604

doi: 10.1111/nph.16088
[9]

Hetherington A, Trewavas A. 1982. Calcium-dependent protein kinase in pea shoot membranes. FEBS Letters 145:67−71

doi: 10.1016/0014-5793(82)81208-8
[10]

Kong X, Lv W, Jiang S, Zhang D, Cai G, et al. 2013. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genomics 14:433

doi: 10.1186/1471-2164-14-433
[11]

Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S. 2005. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant and Cell Physiology 46:356−66

doi: 10.1093/pcp/pci035
[12]

Hu CH, Li BB, Chen P, Shen HY, Xi WG, et al. 2023. Identification of CDPKs involved in TaNOX7 mediated ROS production in wheat. Frontiers in Plant Science 13:1108622

doi: 10.3389/fpls.2022.1108622
[13]

Gao W, Xu FC, Guo DD, Zhao JR, Liu J, et al. 2018. Calcium-dependent protein kinases in cotton: insights into early plant responses to salt stress. BMC Plant Biology 18:15

doi: 10.1186/s12870-018-1230-8
[14]

Zuo R, Hu R, Chai G, Xu M, Qi G, et al. 2013. Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa). Molecular Biology Reports 40:2645−62

doi: 10.1007/s11033-012-2351-z
[15]

Zhao P, Liu Y, Kong W, Ji J, Cai T, et al. 2021. Genome-wide identification and characterization of calcium-dependent protein kinase (CDPK) and CDPK-related kinase (CRK) gene families in Medicago truncatula. International Journal of Molecular Sciences 22:1044

doi: 10.3390/ijms22031044
[16]

Li AL, Zhu YF, Tan XM, Wang B, Wei B, et al. 2008. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Molecular Biology 66:429−43

doi: 10.1007/s11103-007-9281-5
[17]

Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM. 2014. Calcium-dependent protein kinases in plants: evolution, expression and function. Plant and Cell Physiology 55:551−69

doi: 10.1093/pcp/pct200
[18]

Myers C, Romanowsky SM, Barron YD, Garg S, Azuse CL, et al. 2009. Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. The Plant Journal 59:528−39

doi: 10.1111/j.1365-313X.2009.03894.x
[19]

Matschi S, Werner S, Schulze WX, Legen J, Hilger HH, et al. 2013. Function of calcium-dependent protein kinase CPK28 of Arabidopsis thaliana in plant stem elongation and vascular development. The Plant Journal 73:883−96

doi: 10.1111/tpj.12090
[20]

Zou JJ, Li XD, Ratnasekera D, Wang C, Liu WX, et al. 2015. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE 8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. The Plant Cell 27:1445−60

doi: 10.1105/tpc.15.00144
[21]

Asano T, Hayashi N, Kikuchi S, Ohsugi R. 2012. CDPK-mediated abiotic stress signaling. Plant Signaling & Behavior 7:817−21

doi: 10.4161/psb.20351
[22]

Ding Y, Yang H, Wu S, Fu D, Li M, Gong Z, et al. 2022. CPK28-NLP7 module integrates cold-induced Ca2+ signal and transcriptional reprogramming in Arabidopsis. Science Advances 8:7901

doi: 10.1126/sciadv.abn7901
[23]

Almadanim MC, Alexandre BM, Rosa MTG, Sapeta H, Leitão AE, et al. 2017. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. Plant, Cell & Environment 40:1197−213

doi: 10.1111/pce.12916
[24]

Wang S, Tao Y, Zhou Y, Niu J, Shu Y, et al. 2017. Translationally controlled tumor protein GmTCTP interacts with GmCDPKSK5 in response to high temperature and humidity stress during soybean seed development. Plant Growth Regulation 82:187−200

doi: 10.1007/s10725-017-0250-y
[25]

Liu H, Gao F, Li G, Han J, Liu D, et al. 2008. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. The Plant Journal 55:760−73

doi: 10.1111/j.1365-313X.2008.03544.x
[26]

Miao C, Zhang Y, Bai X, Qin T. 2022. Insights into the response of perennial ryegrass to abiotic stress: underlying survival strategies and adaptation mechanisms. Life 12:860

doi: 10.3390/life12060860
[27]

Sun S, An M, Han L, Yin S. 2015. Foliar application of 24-epibrassinolide improved salt stress tolerance of perennial ryegrass. HortScience 50:1518−23

doi: 10.21273/HORTSCI.50.10.1518
[28]

Wu W, Zhang Q, Ervin EH, Yang Z, Zhang X. 2017. Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in Plant Science 8:1017

doi: 10.3389/fpls.2017.01017
[29]

Zhao C, Zhang H, Song C, Zhu JK, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation 1:100017

doi: 10.1016/j.xinn.2020.100017
[30]

Atif RM, Shahid L, Waqas M, Ali B, Rashid MAR, et al. 2019. Insights on calcium-dependent protein kinases (CPKs) signaling for abiotic stress tolerance in plants. International Journal of Molecular Sciences 20:5298

doi: 10.3390/ijms20215298
[31]

Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, et al. 2010. The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. The Plant Journal 63:484−98

doi: 10.1111/j.1365-313X.2010.04257.x
[32]

Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, et al. 2006. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biology 4:e327

doi: 10.1371/journal.pbio.0040327
[33]

Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, et al. 2010. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231:1251−60

doi: 10.1007/s00425-010-1122-0
[34]

Zhao R, Sun H, Zhao N, Jing X, Shen X, et al. 2015. The Arabidopsis Ca2+-dependent protein kinase CPK27 is required for plant response to salt-stress. Gene 563:203−14

doi: 10.1016/j.gene.2015.03.024
[35]

Yu S, Sun Q, Wu J, Zhao P, Sun Y, et al. 2021. Genome-wide identification and characterization of short-chain dehydrogenase/reductase (SDR) gene family in Medicago truncatula. International Journal of Molecular Sciences 22:9498

doi: 10.3390/ijms22179498
[36]

Zhang J, Yu G, Wen W, Ma X, Xu B, et al. 2016. Functional characterization and hormonal regulation of the pheophytinase gene LpPPH controlling leaf senescence in perennial ryegrass. Journal of Experimental Botany 67:935−45

doi: 10.1093/jxb/erv509
[37]

Huang L, Yan H, Jiang X, Yin G, Zhang X, et al. 2014. Identification of candidate reference genes in perennial ryegrass for quantitative RT-PCR under various abiotic stress conditions. PLoS ONE 9:e93724

doi: 10.1371/journal.pone.0093724
[38]

Zhang H, Li X, Yu D, Guan J, Ding H, et al. 2023. A vector-free gene interference system using delaminated Mg-Al-lactate layered double hydroxide nanosheets as molecular carriers to intact plant cells. Plant Methods 19(1):44

doi: 10.1186/s13007-023-01021-1
[39]

Dai M, Huang R, Han Y, Zhang Z, Chen Y, et al. 2022. A novel salt responsive PvHAK16 negatively regulates salt tolerance in transgenic Arabidopsis thaliana. Environmental and Experimental Botany 194:104689

doi: 10.1016/j.envexpbot.2021.104689
[40]

Mohanta TK, Yadav D, Khan AL, Hashem A, Abd-Allah EF, et al. 2019. Molecular players of EF-hand containing calcium signaling event in plants. International Journal of Molecular Sciences 20:1476

doi: 10.3390/ijms20061476
[41]

Yu TF, Zhao WY, Fu JD, Liu YW, Chen M, et al. 2018. Genome-wide analysis of CDPK family in Foxtail Millet and determination of SiCDPK24 functions in drought stress. Frontiers in Plant Science 9:651

doi: 10.3389/fpls.2018.00651
[42]

Cheng SH, Willmann MR, Chen HC, Sheen J. 2002. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiology 129:469−85

doi: 10.1104/pp.005645
[43]

Liu W, Li W, He Q, Daud MK, Chen J, et al. 2014. Genome-wide survey and expression analysis of calcium-dependent protein kinase in Gossypium raimondii. PLoS ONE 9:e98189

doi: 10.1371/journal.pone.0098189
[44]

Alves HLS, Matiolli CC, Soares RC, Cecília Almadanim M, Margarida Oliveira M, et al. 2021. Carbon/nitrogen metabolism and stress response networks - calcium-dependent protein kinases as the missing link? Journal of Experimental Botany 72:4190−201

doi: 10.1093/jxb/erab136
[45]

Rose AB. 2008. Intron-mediated regulation of gene expression. In Nuclear pre-mRNA Processing in Plants, eds Reddy ASN, Golovkin M. Heidelberg: Springer. Vol 326. pp. 277–90. doi: 10.1007/978-3-540-76776-3_15

[46]

Parvathaneni RK, DeLeo VL, Spiekerman JJ, Chakraborty D, Devos KM. 2017. Parallel loss of introns in the ABCB1 gene in angiosperms. BMC Evolutionary Biology 17:238

doi: 10.1186/s12862-017-1077-x
[47]

Yan H, Jiang C, Li X, Sheng L, Dong Q, et al. 2014. PIGD: a database for intronless genes in the Poaceae. BMC Genomics 15:832

doi: 10.1186/1471-2164-15-832
[48]

Li L, Yu D, Zhao F, Pang C, Song M, et al. 2015. Genome-wide analysis of the calcium-dependent protein kinase gene family in Gossypium raimondii. Journal of Integrative Agriculture 14:29−41

doi: 10.1016/S2095-3119(14)60780-2
[49]

Qiao X, Li Q, Yin H, Qi K, Li L, et al. 2019. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biology 20:38

doi: 10.1186/s13059-019-1650-2
[50]

Liu C, Zhang TZ. 2019. Functional diversifications of GhERF1 duplicate genes after the formation of allotetraploid cotton. Journal of Integrative Plant Biology 61:60−74

doi: 10.1111/jipb.12764
[51]

Li Y, Zhang H, Liang S, Chen X, Liu J, et al. 2022. Identification of CDPK gene family in Solanum habrochaites and its function analysis under stress. International Journal of Molecular Sciences 23:4227

doi: 10.3390/ijms23084227
[52]

Li IMH, Liu K, Neal A, Clegg PD, De Val S, et al. 2018. Differential tissue specific, temporal and spatial expression patterns of the Aggrecan gene is modulated by independent enhancer elements. Scientific Reports 8:950

doi: 10.1038/s41598-018-19186-4
[53]

Wang S, Duan Z, Yan Q, Wu F, Zhou P, et al. 2022. Genome-wide identification of the GRAS family genes in Melilotus albus and expression analysis under various tissues and abiotic stresses. International Journal of Molecular Sciences 23:7403

doi: 10.3390/ijms23137403
[54]

Hemsley PA. 2015. The importance of lipid modified proteins in plants. New Phytologist 205:476−89

doi: 10.1111/nph.13085
[55]

Rutschmann F, Stalder U, Piotrowski M, Oecking C, Schaller A. 2002. LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant Physiology 129:156−68

doi: 10.1104/pp.000869
[56]

Martín ML, Busconi L. 2000. Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. The Plant Journal 24:429−35

doi: 10.1046/j.1365-313x.2000.00889.x
[57]

Lu SX, Hrabak EM. 2002. An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiology 128:1008−21

doi: 10.1104/pp.010770
[58]

Hemsley PA, Grierson CS. 2008. Multiple roles for protein palmitoylation in plants. Trends in Plant Science 13:295−302

doi: 10.1016/j.tplants.2008.04.006
[59]

Kwiatkowska K, Matveichuk OV, Fronk J, Ciesielska A. 2020. Flotillins: at the intersection of protein S-palmitoylation and lipid-mediated signaling. International Journal of Molecular Sciences 21:2283

doi: 10.3390/ijms21072283
[60]

Simeunovic A, Mair A, Wurzinger B, Teige M. 2016. Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. Journal of Experimental Botany 67:3855−72

doi: 10.1093/jxb/erw157
[61]

Duan M, Zhang R, Zhu F, Zhang Z, Gou L, et al. 2017. A lipid-anchored NAC transcription factor is translocated into the nucleus and activates glyoxalase I expression during drought stress. The Plant Cell 29:1748−72

doi: 10.1105/tpc.17.00044
[62]

Liu K, Niu Y, Konishi M, Wu Y, Du H, et al. 2017. Discovery of nitrate–CPK–NLP signalling in central nutrient-growth networks. Nature 545:311−16

doi: 10.1038/nature22077
[63]

Hussain S, Hussain S, Ali B, Ren X, Chen X, et al. 2021. Recent progress in understanding salinity tolerance in plants: story of Na+/K+ balance and beyond. Plant Physiology and Biochemistry 160:239−56

doi: 10.1016/j.plaphy.2021.01.029
[64]

Wang Y, Pan C, Chen Q, Xie Q, Gao Y, et al. 2023. Architecture and autoinhibitory mechanism of the plasma membrane Na+/H+ antiporter SOS1 in Arabidopsis. Nature Communications 14:4487

doi: 10.1038/s41467-023-40215-y
[65]

Yang Y, Guo Y. 2018. Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology 60:796−804

doi: 10.1111/jipb.12689
[66]

Sandmann M, Skłodowski K, Gajdanowicz P, Michard E, Rocha M, et al. 2011. The K+ battery-regulating Arabidopsis K+ channel AKT2 is under the control of multiple post-translational steps. Plant Signaling & Behavior 6:558−62

doi: 10.4161/psb.6.4.14908
[67]

Chérel I, Michard E, Platet N, Mouline K, Alcon C, et al. 2002. Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. The Plant Cell 14:1133−46

doi: 10.1105/tpc.000943
[68]

Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America 97:3730−74

doi: 10.1073/pnas.97.7.3730
[69]

Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM. 2002. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences of the United States of America 99:9061−66

doi: 10.1073/pnas.132092099
[70]

Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, et al. 2020. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences 63:635−74

doi: 10.1007/s11427-020-1683-x
[71]

Liu J, Zhu JK. 1998. A calcium sensor homolog required for plant salt tolerance. Science 280:1943−45

doi: 10.1126/science.280.5371.1943
[72]

Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. 2000. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal 23:319−27

doi: 10.1046/j.1365-313x.2000.00787.x