[1] |
Alrifai O, Marcone MF. 2019. Coconut - the tree of life - improvement by biotechnology. Comprehensive Biotechnology 4:586−94 doi: 10.1016/b978-0-444-64046-8.00464-x |
[2] |
Luckanatinvong V, Mahatheeranont S, Siriphanich J. 2018. Variation in the aromatic nature of Nam-Hom coconut depends on the presence and contents of 2-acetyl-1-pyrroline. Scientia Horticulturae 233:277−82 doi: 10.1016/j.scienta.2018.01.049 |
[3] |
Kumar M, Saini SS, Agrawal PK, Roy P, Sircar D. 2021. Nutritional and metabolomics characterization of the coconut water at different nut developmental stages. Journal of Food Composition and Analysis 96:103738 doi: 10.1016/j.jfca.2020.103738 |
[4] |
Rolle RS. 2007. Good practice for the small-scale production of bottled coconut water. FAO Agricultural and Food Engineering Training and Resource Materials, Food and Agriculture Organization of the United Nations, Rome. pp. 1−32. www.fao.org/4/a1418e/a1418e00.pdf |
[5] |
Coton E, Coton M, Guichard H. 2016. Cider (cyder; hard cider): the product and its manufacture. In Encyclopedia of Food and Health, eds Caballero B, Finglas PM, Toldrá F. Amsterdam: Elsevier. pp. 119−28 doi: 10.1016/b978-0-12-384947-2.00163-x |
[6] |
Ye M, Yue T, Yuan Y. 2014. Evolution of polyphenols and organic acids during the fermentation of apple cider. Journal of the Science of Food and Agriculture 94:2951−57 doi: 10.1002/jsfa.6639 |
[7] |
Herrero M, García LA, Díaz M. 2006. Volatile compounds in cider: inoculation time and fermentation temperature effects. Journal of the Institute of Brewing 112:210−14 doi: 10.1002/j.2050-0416.2006.tb00715.x |
[8] |
Rosend J, Kuldjärv R, Rosenvald S, Paalme T. 2019. The effects of apple variety, ripening stage, and yeast strain on the volatile composition of apple cider. Heliyon 5:e01953 doi: 10.1016/j.heliyon.2019.e01953 |
[9] |
Valles BS, Bedriñana RP, Tascón NF, Simón AQ, Madrera RR. 2007. Yeast species associated with the spontaneous fermentation of cider. Food Microbiology 24:25−31 doi: 10.1016/j.fm.2006.04.001 |
[10] |
Wang Z, Svyantek A, Bogenrief S, Kadium VR, Hatterman-Valenti H. 2024. The influence of yeast strain on the chemical, chromatic, and sensory characteristics of 'wodarz' apple cider. Applied Sciences 14:4851 doi: 10.3390/app14114851 |
[11] |
Maicas S. 2020. The role of yeasts in fermentation processes. Microorganisms 8:1142 doi: 10.3390/microorganisms8081142 |
[12] |
Demain AL, Fang A. 2000. The natural functions of secondary metabolites. In History of Modern Biotechnology I, ed. Fiechter A. Berlin, Heidelberg: Springer. Vol 69. pp. 1−39. doi: 10.1007/3-540-44964-7_1 |
[13] |
Cevallos-Cevallos JM, Reyes-De-Corcuera JI. 2012. Metabolomics in food science. Advances in Food and Nutrition Research 67:1−24 doi: 10.1016/B978-0-12-394598-3.00001-0 |
[14] |
Ogrinc N, Košir IJ, Spangenberg JE, Kidrič J. 2003. The application of NMR and MS methods for detection of adulteration of wine, fruit juices, and olive oil. A review. Analytical and Bioanalytical Chemistry 376:424−30 doi: 10.1007/s00216-003-1804-6 |
[15] |
Caudy AA, Mülleder M, Ralser M. 2017. Metabolomics in yeast. Cold Spring Harbor Protocols 2017:pdb.top083576 doi: 10.1101/pdb.top083576 |
[16] |
Hong YS. 2011. NMR-based metabolomics in wine science. Magnetic Resonance in Chemistry 49:S13−S21 doi: 10.1002/mrc.2832 |
[17] |
Wishart DS. 2008. Metabolomics: applications to food science and nutrition research. Trends in Food Science & Technology 19:482−93 doi: 10.1016/j.jpgs.2008.03.003 |
[18] |
Pérez-Jiménez M, Sherman E, Pozo-Bayón MA, Pinu FR. 2021. Application of untargeted volatile profiling and data driven approaches in wine flavoromics research. Food Research International 145:110392 doi: 10.1016/j.foodres.2021.110392 |
[19] |
Cordero C, Kiefl J, Schieberle P, Reichenbach SE, Bicchi C. 2015. Comprehensive two-dimensional gas chromatography and food sensory properties: potential and challenges. Analytical and Bioanalytical Chemistry 407:169−91 doi: 10.1007/s00216-014-8248-z |
[20] |
Ronningen IG. 2016. Untargeted flavoromics to identify flavor active compounds. Thesis. University of Minnesota, USA. 201 pp |
[21] |
Gracka A, Jeleń HH, Majcher M, Siger A, Kaczmarek A. 2016. Flavoromics approach in monitoring changes in volatile compounds of virgin rapeseed oil caused by seed roasting. Journal of Chromatography A 1428:292−304 doi: 10.1016/j.chroma.2015.10.088 |
[22] |
Andujar-Ortiz I, Peppard TL, Reineccius G. 2015. Flavoromics for determining markers ofCookedandFermentedFlavor in strawberry juices. In The Chemical Sensory Informatics of Food: Measurement, Analysis, Integration, eds Guthrie B, Beauchamp J, Buettner A, Lavine BK. Washington, DC: American Chemical Society: pp. 293−312. doi: 10.1021/bk-2015-1191.ch021 |
[23] |
Rodrigues Pereira EP, de Assis Fonseca Faria J. 2013. Evaluating the use of preservatives and the effect of carbonation on the physicochemical and microbiological stability on coconut water. Journal of Food Processing & Beverages 1:4 |
[24] |
Beech FW. 1972. Cider making and cider research: a review. Journal of the Institute of Brewing 78:477−91 doi: 10.1002/j.2050-0416.1972.tb03485.x |
[25] |
Sadineni V, Kondapalli N, Obulam VSR. 2012. Effect of co-fermentation with Saccharomyces cerevisiae and Torulaspora delbrueckii or Metschnikowia pulcherrima on the aroma and sensory properties of mango wine. Annals of Microbiology 62:1353−60 doi: 10.1007/s13213-011-0383-6 |
[26] |
Garde-Cerdán T, Ancín-Azpilicueta C. 2008. Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during wine alcoholic fermentation. LWT - Food Science and Technology 41:501−10 doi: 10.1016/j.lwt.2007.03.018 |
[27] |
Gilbert RM. 1974. A rapid method for the approximate determination of potable ethanol solutions. Quarterly Journal of Studies on Alcohol 35:1057−59 doi: 10.15288/qjsa.1974.35.1057 |
[28] |
Sudheer Kumar Y, Prakasam RS, Reddy OVS. 2009. Optimisation of fermentation conditions for mango (Mangifera indica L.) wine production by employing response surface methodology. International Journal of Food Science and Technology 44:2320−27 doi: 10.1111/j.1365-2621.2009.02076.x |
[29] |
Limwiwattana D, Tongkhao K, Na Jom K. 2016. Effect of sprouting temperature and air relative humidity on metabolic profiles of sprouting black gram (Vigna mungoL.). Journal of Food Processing and Preservation 40:306−15 doi: 10.1111/jfpp.12608 |
[30] |
Torrens J, Riu-Aumatell M, López-Tamames E, Buxaderas S. 2004. Volatile compounds of red and white wines by headspace-solid-phase microextraction using different fibers. Journal of Chromatographic Science 42:310−16 doi: 10.1093/chromsci/42.6.310 |
[31] |
Li X, Malardier-Jugroot C. 2013. Confinement effect in the synthesis of polypyrrole within polymeric templates in aqueous environments. Macromolecules 46:2258−66 doi: 10.1021/ma3020799 |
[32] |
Li X, Yu B, Curran P, Liu SQ. 2012. Impact of two Williopsis yeast strains on the volatile composition of mango wine. International Journal of Food Science and Technology 47:808−15 doi: 10.1111/j.1365-2621.2011.02912.x |
[33] |
Han Y, Du J. 2023. A comparative study of the effect of bacteria and yeasts communities on inoculated and spontaneously fermented apple cider. Food Microbiology 111:104195 doi: 10.1016/j.fm.2022.104195 |
[34] |
Joshi VK, Sharma S, Thakur AD. 2017. Wines: white, red, sparkling, fortified, and cider. In Current Developments in Biotechnology and Bioengineering, eds. Pandey A, Sanromán MA, Du G, Soccol CR, Dussap CG. UK: Elsevier. pp. 353–406. doi: 10.1016/B978-0-444-63666-9.00013-3 |
[35] |
Wattanakul N, Morakul S, Lorjaroenphon Y, Na Jom K. 2020. Integrative metabolomics-flavoromics to monitor dynamic changes of 'Nam Dok Mai' mango (Mangifera indica Linn) wine during fermentation and storage. Food Bioscience 35:100549 doi: 10.1016/j.fbio.2020.100549 |
[36] |
Chen L, Li D, Rong Y. 2022. Fermentation mechanism of ginkgo rice wine using an ultra-high-performance liquid chromatography–quadrupole/time-of-flight mass spectrometry based metabolomics method. Journal of Food Composition and Analysis 105:104230 doi: 10.1016/j.jfca.2021.104230 |
[37] |
Mirás-Avalos JM, Bouzas-Cid Y, Trigo-Córdoba E, Orriols I, Falqué E. 2020. Amino acid profiles to differentiate white wines from three autochtonous Galician varieties. Foods 9:114 doi: 10.3390/foods9020114 |
[38] |
Robinson AL, Boss PK, Solomon PS, Trengove RD, Heymann H, et al. 2014. Origins of grape and wine aroma. Part 1. chemical components and viticultural impacts. American Journal of Enology and Viticulture 65:1−24 doi: 10.5344/ajev.2013.12070 |
[39] |
Zuo W, Zhang T, Xu H, Wang C, Lu M, et al. 2019. Effect of fermentation time on nutritional components of red-fleshed apple cider. Food and Bioproducts Processing 114:276−85 doi: 10.1016/j.fbp.2018.10.010 |
[40] |
Kosseva MR, Kennedy JF. 2001. The handbook of enology. Carbohydrate Polymers 46:297−98 doi: 10.1016/s0144-8617(01)00224-7 |
[41] |
Xu S, Ma Z, Chen Y, Li J, Jiang H, et al. 2022. Characterization of the flavor and nutritional value of coconut water vinegar based on metabolomics. Food Chemistry 369:130872 doi: 10.1016/j.foodchem.2021.130872 |
[42] |
Nakpong P, Wootthikanokkhan S. 2010. High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renewable Energy 35:1682−87 doi: 10.1016/j.renene.2009.12.004 |
[43] |
Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A. 2006. Metabolism of lactic acid bacteria. In Handbook of Enology: The Microbiology of Wine and Vinifications, 2nd edition.US: John Wiley & Sons, Ltd. Volume 1. pp.139−59. doi: 10.1002/0470010363.ch5 |
[44] |
Pan PH, Lin SY, Ou YC, Chen WY, Chuang YH, et al. 2010. Stearic acid attenuates cholestasis-induced liver injury. Biochemical and Biophysical Research Communications 391:1537−42 doi: 10.1016/j.bbrc.2009.12.119 |
[45] |
Lieberman S, Enig MG, Preuss HG. 2006. A review of monolaurin and lauric acid: Natural virucidal and bactericidal agents. Alternative and Complementary Therapies 12:310−14 doi: 10.1089/act.2006.12.310 |
[46] |
Hazelwood LA, Daran JM, van Maris AJA, Pronk JT, Dickinson JR. 2008. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Applied and Environmental Microbiology 74:3920 doi: 10.1128/aem.02625-07 |
[47] |
Zhang G, Xie M, Kang X, Wei M, Zhang Y, et al. 2022. Optimization of ethyl hexanoate production in Saccharomyces cerevisiae by metabolic engineering. LWT 170:114061 doi: 10.1016/j.lwt.2022.114061 |
[48] |
Lee SJ, Rathbone D, Asimont S, Adden R, Ebeler SE. 2004. Dynamic changes in ester formation during chardonnay juice fermentations with different yeast inoculation and initial Brix conditions. American Journal of Enology and Viticulture 55:346−54 doi: 10.5344/ajev.2004.55.4.346 |
[49] |
Nurgel C, Erten H, Canbaş A, Cabaroğlu T, Selli S. 2002. Influence of Saccharomyces cerevisiae strains on fermentation and flavor compounds of white wines made from cv. Emir grown in Central Anatolia, Turkey. Journal of Industrial Microbiology and Biotechnology 29:28−33 doi: 10.1038/sj.jim.7000258 |
[50] |
Vuralhan Z, Morais MA, Tai SL, Piper MDW, Pronk JT. 2003. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Applied and Environmental Microbiology 69:4534−41 doi: 10.1128/AEM.69.8.4534-4541.2003 |
[51] |
Zhang B, Liu H, Xue J, Tang C, Duan C, et al. 2022. Use of Torulaspora delbrueckii and Hanseniaspora vineae co-fermentation with Saccharomyces cerevisiae to improve aroma profiles and safety quality of Petit Manseng wines. LWT 161:113360 doi: 10.1016/j.lwt.2022.113360 |
[52] |
Swiegers JH, Pretorius IS. 2005. Yeast modulation of wine flavor. Advances in Applied Microbiology 57:131−75 doi: 10.1016/S0065-2164(05)57005-9 |