[1]

Pizzuti L, Mrcia SF, Alex FC, Frank H, Claudio MP. 2012. Recent advances in the ultrasound-assisted synthesis of azoles. In Green Chemistry - Environmentally Benign Approaches, eds. Mishra NK, Kidwai M. Rijeka: InTech. doi: 10.5772/35171

[2]

Carruthers W (ed.). 1990. 1,3-dipolar cycloaddition reactions. In Tetrahedron Organic Chemistry Series. Vol. 8. UK: Pergamon Press. pp. 269−331. doi: 10.1016/B978-0-08-034712-7.50011-4

[3]

Dake G. 2002. Cycloaddition reactions in organic synthesis. Synthesis 2002(10):1467

doi: 10.1055/s-2002-33113
[4]

Kras J, Sadowski M, Zawadzińska K, Nagatsky R, Woliński P, et al. 2023. Thermal [3+2] cycloaddition reactions as most universal way for the effective preparation of five-membered nitrogen containing heterocycles. Scientiae Radices 2:247−67

doi: 10.58332/scirad2023v2i3a03
[5]

Padwa A, Pearson WH. 2003. Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products. Volume 59. New York: John Wiley & Sons. doi: 10.1002/0471221902

[6]

Sibi M, Liu M. 2001. Reversal of stereochemistry in enantioselective transformations. Can they be planned or are they just accidental? Current Organic Chemistry 5:719−55

doi: 10.2174/1385272013375265
[7]

Gothelf KV, Hazell RG, Joergensen KA. 1998. ChemInform abstract: molecular sieve dependent absolute stereoselectivity in asymmetric catalytic 1, 3-dipolar cycloaddition reactions. ChemInform 29:51150

doi: 10.1002/chin.199851150
[8]

Otera J, Sakamoto K, Tsukamoto T, Orita A. 1998. Temperature-effected tuning of enantioselectivity in asymmetric catalysis. Tetrahedron Letters 39:3201−4

doi: 10.1016/S0040-4039(98)00459-6
[9]

Zhou J, Ye MC, Huang ZZ, Tang Y. 2004. Controllable enantioselective Friedel-Crafts reaction between indoles and alkylidene malonates catalyzed by pseudo-C3-symmetric trisoxazoline copperII complexes. Journal of Organic Chemistry 69:1309−20

doi: 10.1021/jo035552p
[10]

Gomtsyan A. 2012. Heterocycles in drugs and drug discovery. Chemistry of Heterocyclic Compounds 48:7−10

doi: 10.1007/s10593-012-0960-z
[11]

Ishikura M, Abe T, Choshi T, Hibino S. 2013. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Natural Product Reports 30:694−752

doi: 10.1039/c3np20118j
[12]

Kumar S, Pany SPP, Sudhakar S, Singh SB, Todankar CS, et al. 2022. Targeting parallel topology of G-quadruplex structures by indole- fused quindoline scaffolds. Biochemistry 61:2546−59

doi: 10.1021/acs.biochem.2c00373
[13]

Zawadzińska-Wrochniak K, Zavecz I, Hirka S. 2024. The recent progress in the field of the applications of isoxazoles and their hydrogenated analogs: mini review. Scientiae Radices 3:228−47

doi: 10.58332/scirad2024v3i4a01
[14]

Leelananda SP, Lindert S. 2016. Computational methods in drug discovery. Beilstein Journal of Organic Chemistry 12:2694−718

doi: 10.3762/bjoc.12.267
[15]

Green MJ, Tiberi RL, Friary R, Lutsky BN, Berkenkoph J, et al. 1982. Synthesis and topical antiinflammatory activity of some steroidal [16α,17α-d] Isoxazolidines. Journal of Medicinal Chemistry 25:1492−95

doi: 10.1021/jm00354a020
[16]

Raunak, Kumar V, Mukherjee S, Poonam, Prasad AK, et al. 2005. Microwave mediated synthesis of spiro-(indoline-isoxazolidines): mechanistic study and biological activity evaluation. Tetrahedron 61:5687−97

doi: 10.1016/j.tet.2005.03.027
[17]

Wu Y, Dai GF, Yang JH, Zhang YX, Zhu Y, et al. 2009. Stereoselective synthesis of 15- and 16-substituted isosteviol derivatives and their cytotoxic activities. Bioorganic & Medicinal Chemistry Letters 19:1818−21

doi: 10.1016/j.bmcl.2008.12.101
[18]

Rescifina A, Chiacchio MA, Corsaro A, De Clercq E, Iannazzo D, et al. 2006. Synthesis and biological activity of isoxazolidinyl polycyclic aromatic hydrocarbons: potential DNA intercalators. Journal of Medicinal Chemistry 49:709−15

doi: 10.1021/jm050772b
[19]

Zeyrek CT, Koçak SB, Hüseyin Ü, Pektaş S, Başterzi NS, et al. 2015. Molecular structure and density functional modelling studies of 2-[(E)-2-(4-hydroxyphenyl)ethyliminomethyl] phenol. Journal of Molecular Structure 1100:570−81

doi: 10.1016/j.molstruc.2015.07.068
[20]

Balogun TA, Chukwudozie OS, Ogbodo UC, Junaid IO, Sunday OA, et al. 2022. Discovery of putative inhibitors against main drivers of SARS-CoV-2 infection: Insight from quantum mechanical evaluation and molecular modeling. Frontiers in Chemistry 10:964446

doi: 10.3389/fchem.2022.964446
[21]

Sennikova VV, Zalaltdinova AV, Sadykova YM, Khamatgalimov AR, Gazizov AS, et al. 2022. Diastereoselective synthesis of novel spiro-phosphacoumarins and evaluation of their anti-cancer activity. International Journal of Molecular Sciences 23:14348

doi: 10.3390/ijms232214348
[22]

Duret G, Quinlan R, Yin B, Martin RE, Bisseret P, et al. 2017. Intramolecular inverse electron-demand [4+2] cycloadditions of ynamides with pyrimidines: scope and density functional theory insights. Journal of Organic Chemistry 82:1726−42

doi: 10.1021/acs.joc.6b02986
[23]

Chafaa F, Nacereddine AK, Djerourou A. 2020. A combined topological ELF, NCI and QTAIM study of mechanism and hydrogen bond controlling the selectivity of the IMDC reaction of nitrone-alkene obtained from m-allyloxybenzaldehyde. Letters in Organic Chemistry 17:260−67

doi: 10.2174/1570178616666190401202143
[24]

Domingo PLR, Ríos-Gutiérrez DM, Adjieufack AI, Ndassa PIM, Nouhou CN, et al. 2018. Molecular electron density theory study of fused regioselectivity in the intramolecular [3+2] cycloaddition reaction of cyclic nitrones. ChemistrySelect 3:5412−20

doi: 10.1002/slct.201800224
[25]

Jasiński R. 2023. On the question of selective protocol for the preparation of juglone via (4+2) cycloaddition involving 3-hydroxypyridazine: DFT mechanistic study. Chemistry of Heterocyclic Compounds 59:179−82

doi: 10.1007/s10593-023-03180-4
[26]

Jasiński R. 2013. Competition between the one-step and two-step, zwitterionic mechanisms in the [2+3] cycloaddition of gem-dinitroethene with (Z)-C,N-diphenylnitrone: a DFT computational study. Tetrahedron 69:927−32

doi: 10.1016/j.tet.2012.10.095
[27]

Gothelf AS, Gothelf KV, Hazell RG, Jørgensen KA. 2002. Catalytic asymmetric 1,3-dipolar cycloaddition reactions of azomethine ylides—a simple approach to optically active highly functionalized proline derivatives. Angewandte Chemie International Edition 41:4236−38

doi: 10.1002/1521-3773(20021115)41:22<4236::AID-ANIE4236>3.0.CO;2-W
[28]

Żmigrodzka M, Sadowski M, Kras J, Desler E, Demchuk OM, et al. 2022. Polar [3+2] cycloaddition between N-methyl azomethine ylide and trans-3,3,3-trichloro-1-nitroprop-1-ene. Scientiae Radices 1:26−35

doi: 10.58332/v22i1a02
[29]

Barama L, Bayoud B, Chafaa F, Khorief Nacereddine A, Djerourou A. 2018. A mechanistic MEDT study of the competitive catalysed [4+2] and [2+2] cycloaddition reactions between 1-methyl-1-phenylallene and methyl acrylate: the role of Lewis acid on the mechanism and selectivity. Structural Chemistry 29:1709−21

doi: 10.1007/s11224-018-1152-y
[30]

Lamri S, Heddam A, Kara M, Yahia W, Khorief Nacereddine A. 2021. The role of the catalyst on the reactivity and mechanism in the Diels–alder cycloaddition step of the povarov reaction for the synthesis of a biological active quinoline derivative: experimental and theoretical investigations. Organics 2:57−71

doi: 10.3390/org2010006
[31]

Domingo LR. 2016. Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules 21:1319

doi: 10.3390/molecules21101319
[32]

Ríos-Gutiérrez M, Domingo LR. 2019. Unravelling the mysteries of the [3+2] cycloaddition reactions. European Journal of Organic Chemistry 2019:267−82

doi: 10.1002/ejoc.201800916
[33]

Domingo LR, Emamian SR. 2014. Understanding the mechanisms of [3+2] cycloaddition reactions. The pseudoradical versus the zwitterionic mechanism. Tetrahedron 70:1267−73

doi: 10.1016/j.tet.2013.12.059
[34]

Koumbis AE, Gallos J. 2003. 1,3-dipolar cycloadditions in the synthesis of carbohydrate mimics. Part 2: nitrones and oximes. Current Organic Chemistry 7:585−628

doi: 10.2174/1385272033486783
[35]

Feuer H. 2001. Nitrile oxides, nitrones, and nitronates in organic synthesis: novel strategies in synthesis. Hoboken, New Jersey: John Wiley & Sons. doi: 10.1002/9780470191552

[36]

Majumder S, Bhuyan PJ. 2012. Stereoselective synthesis of novel annulated thiopyrano indole derivatives from simple oxindole via intramolecular 1,3-dipolar cycloaddition reactions of nitrone and nitrile oxide. Tetrahedron Letters 53:762−64

doi: 10.1016/j.tetlet.2011.11.136
[37]

Alimohammadi K, Sarrafi Y, Tajbakhsh M, Yeganegi S, Hamzehloueian M. 2011. An experimental and theoretical investigation of the regio- and stereoselectivity of the polar [3+2] cycloaddition of azomethine ylides to nitrostyrenes. Tetrahedron 67:1589−97

doi: 10.1016/j.tet.2010.12.034
[38]

Zeroual A, Ríos-Gutiérrez M, El Idrissi M, El Alaoui El Abdallaoui H, Domingo LR. 2019. An MEDT study of the mechanism and selectivities of the [3+2] cycloaddition reaction of tomentosin with benzonitrile oxide. International Journal of Quantum Chemistry 119:e25980

doi: 10.1002/qua.25980
[39]

Yahia W, Nacereddine AK, Liacha M. 2014. Towards understanding the role of lewis acid on the regioselectivity and mechanism for the acetylation reaction of 2-benzoxazolinone with acetyl chloride: a DFT study. Progress in Reaction Kinetics and Mechanism 39:365−74

doi: 10.3184/146867814x14119972226920
[40]

Hehre WJ. 1976. Ab initio molecular orbital theory. Accounts of Chemical Research 9:399−406

doi: 10.1021/ar50107a003
[41]

Fukui K. 1981. The path of chemical reactions - the IRC approach. Accounts of Chemical Research 14:363−68

doi: 10.1021/ar00072a001
[42]

Reed AE, Curtiss LA, Weinhold F. 1988. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews 88:899−926

doi: 10.1021/cr00088a005
[43]

Weinhold F. 1998. Natural Bond Orbital Methods. In Encyclopedia of Computational Chemistry. Hoboken, New Jersey: John Wiley & Sons. doi: 10.1002/0470845015.cna009

[44]

Tomasi J, Persico M. 1994. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chemical Reviews 94:2027−94

doi: 10.1021/cr00031a013
[45]

Cancès E, Mennucci B, Tomasi J. 1997. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of Chemical Physics 107:3032−41

doi: 10.1063/1.474659
[46]

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. 2009. Gaussian 09, revision A. 02. Gaussian, Inc, Wallingford

[47]

Becke AD, Edgecombe KE. 2008. A simple measure of electron localization in atomic and molecular-systems. Journal of Chemical Physics 92:5397−403

doi: 10.1063/1.458517
[48]

Lu T, Chen F. 2012. Multiwfn: a multifunctional wavefunction analyzer. Journal of Computational Chemistry 33:580−92

doi: 10.1002/jcc.22885
[49]

Thomsen DL, Axson JL, Schrøder SD, Lane JR, Vaida V, et al. 2013. Intramolecular interactions in 2-aminoethanol and 3-aminopropanol. The Journal of Physical Chemistry A 117:10260−73

doi: 10.1021/jp405512y
[50]

Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, et al. 2011. NCIPLOT: a program for plotting noncovalent interaction regions. Journal of Chemical Theory and Computation 7:625−32

doi: 10.1021/ct100641a
[51]

Bader RFM, Essén H. 1984. The characterization of atomic interactions. The Journal of Chemical Physics 80:1943−60

doi: 10.1063/1.446956
[52]

Zawadzińska K, Ríos-Gutiérrez M, Kula K, Woliński P, Mirosław B, et al. 2021. The participation of 3,3,3-trichloro-1-nitroprop-1-ene in the [3+2] cycloaddition reaction with selected nitrile N-oxides in the light of the experimental and MEDT quantum chemical study. Molecules 26:6774

doi: 10.3390/molecules26226774
[53]

Mirosław B, Babyuk D, Łapczuk-Krygier A, Kącka-Zych A, Demchuk OM, et al. 2018. Regiospecific formation of the nitromethyl-substituted 3-phenyl-4,5-dihydroisoxazole via [3+2] cycloaddition. Monatshefte Für Chemie - Chemical Monthly 149:1877−84

doi: 10.1007/s00706-018-2227-6
[54]

Yahia W, Nacereddine AK, Liacha M, Djerourou A. 2018. A quantum-chemical DFT study of the mechanism and regioselectivity of the 1,3-dipolar cycloaddition reaction of nitrile oxide with electron-rich ethylenes. International Journal of Quantum Chemistry 118:e25540

doi: 10.1002/qua.25540
[55]

Domingo LR, Sáez JA. 2009. Understanding the mechanism of polar Diels–alder reactions. Organic & Biomolecular Chemistry 7:3576−83

doi: 10.1039/B909611F
[56]

Domingo LR, Aurell MJ, Pérez P. 2014. A DFT analysis of the participation of zwitterionic TACs in polar [3+2] cycloaddition reactions. Tetrahedron 70:4519−25

doi: 10.1016/j.tet.2014.05.003
[57]

Wiberg KB. 1968. Application of the Pople-santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083−96

doi: 10.1016/0040-4020(68)88057-3
[58]

Benchouk W, Mekelleche SM, Silvi B, Aurell MJ, Domingo LR. 2011. Understanding the kinetic solvent effects on the 1,3-dipolar cycloaddition of benzonitrile N-oxide: a DFT study. Journal of Physical Organic Chemistry 24:611−18

doi: 10.1002/poc.1858
[59]

Domingo LR, Saéz JA, Zaragozá RJ, Arnó M. 2008. Understanding the participation of quadricyclane as nucleophile in polar [2σ+2σ+2π] cycloadditions toward electrophilic π molecules. Journal of Organic Chemistry 73:8791−99

doi: 10.1021/jo801575g
[60]

Khorief Nacereddine A, Sobhi C, Djerourou A, Ríos-Gutiérrez M, Domingo LR. 2015. Non-classical CH···O hydrogen-bond determining the regio- and stereoselectivity in the [3+2] cycloaddition reaction of (Z)-C-phenyl-N-methylnitrone with dimethyl 2-benzylidenecyclopropane-1,1-dicarboxylate. A topological electron-density study. RSC Advances 5:99299−311

doi: 10.1039/C5RA20268J
[61]

Khorief Nacereddine A, Merzoud L, Morell C, Chermette H. 2021. A computational investigation of the selectivity and mechanism of the Lewis acid catalyzed oxa-Diels-Alder cycloaddition of substituted diene with benzaldehyde. Journal of Computational Chemistry 42:1296−311

doi: 10.1002/jcc.26547
[62]

Khorief Nacereddine A. 2020. A MEDT computational study of the mechanism, reactivity and selectivity of non-polar [3+2] cycloaddition between quinazoline-3-oxide and methyl 3-methoxyacrylate. Journal of Molecular Modeling 26:328

doi: 10.1007/s00894-020-04585-0
[63]

Chafaa F, Khorief Nacereddine A, Djerourou A. 2019. Unravelling the mechanism and the origin of the selectivity of the [3 + 2] cycloaddition reaction between electrophilic nitrone and nucleophilic alkene. Theoretical Chemistry Accounts 138:123

doi: 10.1007/s00214-019-2510-6
[64]

Rozas I, Alkorta I, Elguero J. 2000. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. Journal of the American Chemical Society 122:11154−61

doi: 10.1021/ja0017864
[65]

Grabowski SJ, Andrzej Sokalski W, Dyguda E, Leszczyński J. 2006. Quantitative classification of covalent and noncovalent H-bonds. The Journal of Physical Chemistry B 110:6444−46

doi: 10.1021/jp0600817