| [1] |
Showalter AM, Keppler BD, Lichtenberg J, Gu D, Welch LR. 2010. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiology 153:485−513 doi: 10.1104/pp.110.156554 |
| [2] |
Johnson KL, Cassin AM, Lonsdale A, Wong GKS, Soltis DE, et al. 2017. Insights into the evolution of hydroxyproline-rich glycoproteins from 1000 plant transcriptomes. Plant Physiology 174:904−21 doi: 10.1104/pp.17.00295 |
| [3] |
Ellis M, Egelund J, Schultz CJ, Bacic A. 2010. Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiology 153:403−19 doi: 10.1104/pp.110.156000 |
| [4] |
Huang G, Gong S, Xu W, Li W, Li P, et al. 2013. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiology 161:1278−90 doi: 10.1104/pp.112.203760 |
| [5] |
Kitazawa K, Tryfona T, Yoshimi Y, Hayashi Y, Kawauchi S, et al. 2013. β-galactosyl Yariv reagent binds to the β-1,3-galactan of arabinogalactan proteins. Plant Physiology 161:1117−26 doi: 10.1104/pp.112.211722 |
| [6] |
Leszczuk A, Szczuka E, Wydrych J, Zdunek A. 2018. Changes in arabinogalactan proteins (AGPs) distribution in apple (Malus x domestica) fruit during senescence. Postharvest Biology and Technology 138:99−106 doi: 10.1016/j.postharvbio.2018.01.004 |
| [7] |
Leszczuk A, Kalaitzis P, Blazakis KN, Zdunek A. 2020. The role of arabinogalactan proteins (AGPs) in fruit ripening-a review. Horticulture Research 7:176 doi: 10.1038/s41438-020-00397-8 |
| [8] |
Huber O, Sumper M. 1994. Algal-CAMs: isoforms of a cell adhesion molecule in embryos of the alga volvox with homology to Drosophila fasciclin I. The EMBO Journal 13:4212−22 doi: 10.1002/j.1460-2075.1994.tb06741.x |
| [9] |
Kim JE, Jeong HW, Nam JO, Lee BH, Choi JY, et al. 2002. Identification of motifs in the fasciclin domains of the transforming growth factor-β-induced matrix protein βig-h3 that interact with the αvβ5 integrin. Journal of Biological Chemistry 277:46159−65 doi: 10.1074/jbc.M207055200 |
| [10] |
Johnson KL, Jones BJ, Bacic A, Schultz CJ. 2003. The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiology 133:1911−25 doi: 10.1104/pp.103.031237 |
| [11] |
Faik A, Abouzouhair J, Sarhan F. 2006. Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): identification and bioinformatic analyses. Molecular Genetics and Genomics 276:478−94 doi: 10.1007/s00438-006-0159-z |
| [12] |
Xue H, Veit C, Abas L, Tryfona T, Maresch D, et al. 2017. Arabidopsis thaliana FLA4 functions as a glycan-stabilized soluble factor via its carboxy-proximal Fasciclin 1 domain. The Plant Journal 91:613−30 doi: 10.1111/tpj.13591 |
| [13] |
Ma H, Zhao J. 2010. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). Journal of Experimental Botany 61:2647−68 doi: 10.1093/jxb/erq104 |
| [14] |
Huang G, Xu W, Gong S, Li B, Wang X, et al. 2008. Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress. Physiologia Plantarum 134:348−59 doi: 10.1111/j.1399-3054.2008.01139.x |
| [15] |
Wang H, Jiang C, Wang C, Yang Y, Yang L, et al. 2015. Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell-wall composition in transgenic trees. Journal of Experimental Botany 66:1291−302 doi: 10.1093/jxb/eru479 |
| [16] |
Liu H, Shi R, Wang X, Pan Y, Li Z, et al. 2013. Characterization and expression analysis of a fiber differentially expressed Fasciclin-like arabinogalactan protein gene in Sea Island cotton fibers. PLoS One 8:e70185 doi: 10.1371/journal.pone.0070185 |
| [17] |
Guerriero G, Mangeot-Peter L, Legay S, Behr M, Lutts S, et al. 2017. Identification of fasciclin-like arabinogalactan proteins in textile hemp (Cannabis sativa L.): in silico analyses and gene expression patterns in different tissues. BMC Genomics 18:741 doi: 10.1186/s12864-017-3970-5 |
| [18] |
Li J, Yu M, Geng L, Zhao J. 2010. The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. The Plant Journal 64:482−97 doi: 10.1111/j.1365-313X.2010.04344.x |
| [19] |
Tan H, Liang W, Hu J, Zhang D. 2012. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Developmental Cell 22:1127−37 doi: 10.1016/j.devcel.2012.04.011 |
| [20] |
Deng Y, Wan Y, Liu W, Zhang L, Zhou K, et al. 2022. OsFLA1 encodes a fasciclin-like arabinogalactan protein and affects pollen exine development in rice. Theoretical and Applied Genetics 135:1247−62 doi: 10.1007/s00122-021-04028-1 |
| [21] |
Showalter AM, Keppler BD, Liu X, Lichtenberg J, Welch LR. 2016. Bioinformatic identification and analysis of hydroxyproline-rich glycoproteins in Populus trichocarpa. BMC Plant Biology 16:229 doi: 10.1186/s12870-016-0912-3 |
| [22] |
Takahashi D, Kawamura Y, Uemura M. 2016. Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. Journal of Experimental Botany 67:5203−15 doi: 10.1093/jxb/erw279 |
| [23] |
Cagnola JI, Dumont de Chassart GJ, Ibarra SE, Chimenti C, Ricardi MM, et al. 2018. Reduced expression of selected FASCICLIN-LIKE ARABINOGALACTAN PROTEIN genes associates with the abortion of kernels in field crops of Zea mays (maize) and of Arabidopsis seeds. Plant, Cell & Environment 41:661−74 doi: 10.1111/pce.13136 |
| [24] |
Ma Y, MacMillan CP, de Vries L, Mansfield SD, Hao P, et al. 2022. FLA11 and FLA12 glycoproteins fine-tune stem secondary wall properties in response to mechanical stresses. New Phytologist 233:1750−67 doi: 10.1111/nph.17898 |
| [25] |
Allelign Ashagre H, Zaltzman D, Idan-Molakandov A, Romano H, Tzfadia O, et al. 2021. FASCICLIN-LIKE 18 is a new player regulating root elongation in Arabidopsis thaliana. Frontiers in Plant Science 12:645286 doi: 10.3389/fpls.2021.645286 |
| [26] |
Liu E, MacMillan CP, Shafee T, Ma Y, Ratcliffe J, et al. 2020. Fasciclin-like arabinogalactan-protein 16 (FLA16) is required for stem development in Arabidopsis. Frontiers in Plant Science 11:615392 doi: 10.3389/fpls.2020.615392 |
| [27] |
Macmillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG. 2010. Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. The Plant Journal 62:689−703 doi: 10.1111/j.1365-313X.2010.04181.x |
| [28] |
Miao Y, Cao J, Huang L, Yu Y, Lin S. 2021. FLA14 is required for pollen development and preventing premature pollen germination under high humidity in Arabidopsis. BMC Plant Biology 21:254 doi: 10.1186/s12870-021-03038-x |
| [29] |
Shi H, Kim Y, Guo Y, Stevenson B, Zhu J. 2003. The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. The Plant Cell 15:19−32 |
| [30] |
Xu S, Rahman A, Baskin TI, Kieber JJ. 2008. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. The Plant Cell 20:3065−79 doi: 10.1105/tpc.108.063354 |
| [31] |
Grumet R, Garcia-Mas J, Katzir N. 2017. Cucurbit genetics and genomics: a look to the future. In Genetics and Genomics of Cucurbitaceae, eds Grumet R, Katzir N, Garcia-Mas J. Cham: Springer. Volume 20. pp. 409–15. doi: 10.1007/7397_2017_1 |
| [32] |
Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, et al. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology 37:420−23 doi: 10.1038/s41587-019-0036-z |
| [33] |
Eisenhaber B, Bork P, Eisenhaber F. 1999. Prediction of potential GPI-modification sites in proprotein sequences. Journal of Molecular Biology 292:741−58 doi: 10.1006/jmbi.1999.3069 |
| [34] |
Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, et al. 1999. Protein identification and analysis tools in the ExPASy server. In 2-D Proteome Analysis Protocols, ed. Link AJ. US: Humana Press. Volume 112. pp. 531−52. doi: 10.1385/1-59259-584-7:531 |
| [35] |
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, et al. 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Research 35:W585−W587 doi: 10.1093/nar/gkm259 |
| [36] |
Gupta R, Brunak S. 2002. Prediction of glycosylation across the human proteome and the correlation to protein function. Biocomputing 2002 2001:310−22 doi: 10.1142/9789812799623_0029 |
| [37] |
Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, et al. 2013. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. The EMBO Journal 32:1478−88 doi: 10.1038/emboj.2013.79 |
| [38] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−1202 doi: 10.1016/j.molp.2020.06.009 |
| [39] |
Wang J, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, et al. 2023. The conserved domain database in 2023. Nucleic Acids Research 51:D384−D388 doi: 10.1093/nar/gkac1096 |
| [40] |
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208 doi: 10.1093/nar/gkp335 |
| [41] |
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. 2007. Clustal W and clustal X version 2.0. Bioinformatics 23:2947−48 doi: 10.1093/bioinformatics/btm404 |
| [42] |
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870−74 doi: 10.1093/molbev/msw054 |
| [43] |
He Z, Zhang H, Gao S, Lercher MJ, Chen WH, et al. 2016. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Research 44:W236−W241 doi: 10.1093/nar/gkw370 |
| [44] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27 doi: 10.1093/nar/30.1.325 |
| [45] |
Cheng J, Wen S, Xiao S, Lu B, Ma M, et al. 2018. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. Journal of Experimental Botany 69:511−23 doi: 10.1093/jxb/erx440 |
| [46] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
| [47] |
Schultz CJ, Rumsewicz MP, Johnson KL, Jones BJ, Gaspar YM, et al. 2002. Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiology 129:1448−63 doi: 10.1104/pp.003459 |
| [48] |
Shpak E, Barbar E, Leykam JF, Kieliszewski MJ. 2001. Contiguous hydroxyproline residues direct hydroxyproline arabinosylation in Nicotiana tabacum. Journal of Biological Chemistry 276:11272−78 doi: 10.1074/jbc.M011323200 |
| [49] |
Tan L, Leykam JF, Kieliszewski MJ. 2003. Glycosylation motifs that direct arabinogalactan addition to arabinogalactan-proteins. Plant Physiology 132:1362−69 doi: 10.1104/pp.103.021766 |
| [50] |
Ren Y, Li M, Guo S, Sun H, Zhao J, et al. 2021. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits. The Plant Cell 33:1554−73 doi: 10.1093/plcell/koab055 |
| [51] |
Wan H, Wu L, Yang Y, Zhou G, Ruan YL. 2018. Evolution of sucrose metabolism: the dichotomy of invertases and beyond. Trends in Plant Science 23:163−77 doi: 10.1016/j.tplants.2017.11.001 |
| [52] |
Dai N, Cohen S, Portnoy V, Tzuri G, Harel-Beja R, et al. 2011. Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Molecular Biology 76:1−18 doi: 10.1007/s11103-011-9757-1 |
| [53] |
Wingenter K, Schulz A, Wormit A, Wic S, Trentmann O, et al. 2010. Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis. Plant Physiology 154:665−77 doi: 10.1104/pp.110.162040 |
| [54] |
Fujihara Y, Ikawa M. 2016. GPI-AP release in cellular, developmental, and reproductive biology. Journal of Lipid Research 57:538−45 doi: 10.1194/jlr.R063032 |
| [55] |
Liang R, You L, Dong F, Zhao X, Zhao J. 2020. Identification of hydroxyproline-containing proteins and hydroxylation of proline residues in rice. Frontiers in Plant Science 11:1207 doi: 10.3389/fpls.2020.01207 |
| [56] |
Borassi C, Gloazzo Dorosz J, Ricardi MM, Carignani Sardoy M, Pol Fachin L, et al. 2020. A cell surface arabinogalactan-peptide influences root hair cell fate. New Phytologist 227:732−43 doi: 10.1111/nph.16487 |
| [57] |
Hu J, Wang J, Muhammad T, Tuerdiyusufu D, Yang T, et al. 2024. Functional analysis of fasciclin-like arabinogalactan in carotenoid synthesis during tomato fruit ripening. Plant Physiology and Biochemistry 210:108589 doi: 10.1016/j.plaphy.2024.108589 |
| [58] |
Jung B, Ludewig F, Schulz A, Meißner G, Wöstefeld N, et al. 2015. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. Nature Plants 1:14001 doi: 10.1038/nplants.2014.1 |
| [59] |
Fenn MA, Giovannoni JJ. 2021. Phytohormones in fruit development and maturation. The Plant Journal 105:446−58 doi: 10.1111/tpj.15112 |
| [60] |
Seifert GJ, Xue H, Acet T. 2014. The Arabidopsis thaliana FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth. Annals of Botany 114:1125−33 doi: 10.1093/aob/mcu010 |