[1] |
Ayalew H, Zhang H, Wang J, Wu S, Qiu K, et al. 2022. Potential feed additives as antibiotic alternatives in broiler production. Frontiers in Veterinary Science 9:916473 doi: 10.3389/fvets.2022.916473 |
[2] |
Rathnayake D, Mun HS, Dilawar MA, Baek KS, Yang CJ. 2021. Time for a paradigm shift in animal nutrition metabolic pathway: dietary inclusion of organic acids on the production parameters, nutrient digestibility, and meat quality traits of swine and broilers. Life 11(6):476 doi: 10.3390/life11060476 |
[3] |
Xu QL, Liu C, Mo XJ, Chen M, Zhao XL, et al. 2022. Drinking water supplemented with acidifiers improves the growth performance of weaned pigs and potentially regulates antioxidant capacity, immunity, and gastrointestinal microbiota diversity. Antioxidants 11(5):809 doi: 10.3390/antiox11050809 |
[4] |
Li J, Liu Y, Niu J, Jing C, Jiao N, et al. 2022. Supplementation with paraformic acid in the diet improved intestinal development through modulating intestinal inflammation and microbiota in broiler chickens. Frontiers in Microbiology 13:975056 doi: 10.3389/fmicb.2022.975056 |
[5] |
Abd El-Hack ME, Ashour EA, Youssef IM, Elsherbeni AI, Tellez-Isaias G, et al. 2024. Formic acid as an antibiotic alternative in broiler diets: effects on growth, carcass characteristics, blood chemistry, and intestinal microbial load. Poultry Science 103:103973 doi: 10.1016/j.psj.2024.103973 |
[6] |
Iammarino M, Di Taranto A, Palermo C, Muscarella M. 2011. Survey of benzoic acid in cheeses: contribution to the estimation of an admissible maximum limit. Food Additives & Contaminants: Part B 4:231−37 doi: 10.1080/19393210.2011.620355 |
[7] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402−8 doi: 10.1006/meth.2001.1262 |
[8] |
Mantzios T, Tsiouris V, Kiskinis K, Economou V, Petridou E, et al. 2023. In vitro investigation of the antibacterial activity of nine commercial water disinfectants, acidifiers, and glyceride blends against the most important poultry zoonotic bacteria. Pathogens 12(3):381 doi: 10.3390/pathogens12030381 |
[9] |
Nath SK, Hossain MT, Ferdous M, Siddika MA, Hossain A, et al. 2023. Effects of antibiotic, acidifier, and probiotic supplementation on mortality rates, lipoprotein profile, and carcass traits of broiler chickens. Veterinary and Animal Science 22:100325 doi: 10.1016/j.vas.2023.100325 |
[10] |
Guo YJ, Wang ZY, Wang YS, Chen B, Huang YQ, et al. 2022. Impact of drinking water supplemented 2-hydroxy-4-methylthiobutyric acid in combination with acidifier on performance, intestinal development, and microflora in broilers. Poultry Science 101(3):101661 doi: 10.1016/j.psj.2021.101661 |
[11] |
Reda FM, Ismail IE, Attia AI, Fikry AM, Khalifa E, et al. 2021. Use of fumaric acid as a feed additive in quail's nutrition: its effect on growth rate, carcass, nutrient digestibility, digestive enzymes, blood metabolites, and intestinal microbiota. Poultry Science 100(12):101493 doi: 10.1016/j.psj.2021.101493 |
[12] |
Xu F, Wu H, Xie J, Zeng T, Hao L, et al. 2023. The effects of fermented feed on the growth performance, antioxidant activity, immune function, intestinal digestive enzyme activity, morphology, and microflora of yellow-feather chickens. Animals 22:3545 doi: 10.3390/ani13223545 |
[13] |
Chen X, Zheng A, Chen Z, Pirzado SA, Wang Z, et al. 2024. Potassium diformate affects the growth and development of broilers by improving intestinal function and digestive enzyme activity. Poultry Science 103(10):104049 doi: 10.1016/j.psj.2024.104049 |
[14] |
Yang X, Liu Y, Yan F, Yang C, Yang X. 2019. Effects of encapsulated organic acids and essential oils on intestinal barrier, microbial count, and bacterial metabolites in broiler chickens. Poultry Science 98(7):2858−65 doi: 10.3382/ps/pez031 |
[15] |
Bagal VL, Khatta VK, Tewatia BS, Sangwan SK, Raut SS. 2016. Relative efficacy of organic acids and antibiotics as growth promoters in broiler chicken. Veterinary World 4:377−82 doi: 10.14202/vetworld.2016.377-382 |
[16] |
Luo C, Wang L, Yuan J. 2023. Supplemental enzymes and probiotics on the gut health of broilers fed with a newly harvested corn diet. Poultry Science 102(7):102740 doi: 10.1016/j.psj.2023.102740 |
[17] |
Tan H, Zhen W, Bai D, Liu K, He X, et al. 2023. Effects of dietary chlorogenic acid on intestinal barrier function and the inflammatory response in broilers during lipopolysaccharide-induced immune stress. Poultry Science 102(5):102623 doi: 10.1016/j.psj.2023.102623 |
[18] |
Dai H, Huang Z, Shi F, Li S, Zhang Y, et al. 2024. Effects of maternal hawthorn-leaf flavonoid supplementation on the intestinal development of offspring chicks. Poultry Science 103(9):103969 doi: 10.1016/j.psj.2024.103969 |
[19] |
Al Anas M, Aprianto MA, Akit H, Muhlisin, Kurniawati A, et al. 2024. Black soldier fly larvae oil (Hermetia illucens L.) calcium salt enhances intestinal morphology and barrier function in laying hens. Poultry Science 103(7):103777 doi: 10.1016/j.psj.2024.103777 |
[20] |
Tzora A, Giannenas I, Karamoutsios A, Papaioannou N, Papanastasiou D, et al. 2017. Effects of oregano, attapulgite, benzoic acid and their blend on chicken performance, intestinal microbiology and intestinal morphology. The Journal of Poultry Science 54(3):218−27 doi: 10.2141/jpsa.0160071 |
[21] |
Mao X, Yang Q, Chen D, Yu B, He J. 2019. Benzoic acid used as food and feed additives can regulate gut functions. Biomed Research International 2019:5721585 doi: 10.1155/2019/5721585 |
[22] |
Hong C, Huang Y, Cao S, Wang L, Yang X, et al. 2024. Accurate models and nutritional strategies for specific oxidative stress factors: Does the dose matter in swine production? Journal of Animal Science and Biotechnology 15(1):11 doi: 10.1186/s40104-023-00964-8 |
[23] |
Kotha RR, Tareq FS, Yildiz E, Luthria DL. 2022. Oxidative stress and antioxidants - a critical review on in vitro antioxidant assays. Antioxidants 11(12):2388 doi: 10.3390/antiox11122388 |
[24] |
Truong L, King AJ. 2023. Lipid oxidation and antioxidant capacity in multigenerational heat stressed Japanese quail (Coturnix coturnix japonica). Poultry Science 102(11):103005 doi: 10.1016/j.psj.2023.103005 |
[25] |
Hou Y, Michiels J, Kerschaver CV, Vandaele M, Majdeddin M, et al. 2023. The kinetics of glutathione in the gastrointestinal tract of weaned piglets supplemented with different doses of dietary reduced glutathione. Frontiers in Veterinary Science 10:1220213 doi: 10.3389/fvets.2023.1220213 |
[26] |
Hu X, Wang Y, Sheikhahmadi A, Li X, Buyse J, et al. 2019. Effects of dietary energy level on appetite and central adenosine monophosphate-activated protein kinase (AMPK) in broilers. Journal of Animal Science 97(11):4488−95 doi: 10.1093/jas/skz312 |
[27] |
Lee J, Kim WK. 2023. Applications of Enteroendocrine Cells (EECs) Hormone: applicability on Feed Intake and Nutrient Absorption in Chickens. Animals 13(18):2975 doi: 10.3390/ani13182975 |
[28] |
Wan Y, Deng Q, Zhou Z, Deng Y, Zhang J, et al. 2023. Cholecystokinin (CCK) and its receptors (CCK1R and CCK2R) in chickens: functional analysis and tissue expression. Poultry Science 102(1):102273 doi: 10.1016/j.psj.2022.102273 |
[29] |
Nie Q, Fang M, Xie L, Peng X, Xu H, et al. 2009. Molecular characterization of the Ghrelin and Ghrelin receptor genes and effects on fat deposition in chicken and duck. BioMed Research International 2009:567120 doi: 10.1155/2009/567120 |
[30] |
Reid AMA, Wilson PW, Caughey SD, Dixon LM, D'Eath RB, et al. 2017. Pancreatic PYY but not PPY expression is responsive to short-term nutritional state and the pancreas constitutes the major site of PYY mRNA expression in chickens. General and Comparative Endocrinology 252:226−35 doi: 10.1016/j.ygcen.2017.07.002 |
[31] |
Hamid H, Shi HQ, Ma GY, Fan Y, Li WX, et al. 2018. Influence of acidified drinking water on growth performance and gastrointestinal function of broilers. Poultry Science 97(10):3601−9 doi: 10.3382/ps/pey212 |