[1] |
Tundwal A, Kumar H, Binoj BJ, Sharma R, Kumari R, et al. 2024. Conducting polymers and carbon nanotubes in the field of environmental remediation: Sustainable developments. Coordination Chemistry Reviews 500:215533 doi: 10.1016/j.ccr.2023.215533 |
[2] |
Goswami MK, Srivastava A, Dohare RK, Tiwari AK, Srivastav A. 2023. Recent advances in conducting polymer-based magnetic nanosorbents for dyes and heavy metal removal: fabrication, applications, and perspective. Environmental Science and Pollution Research 30:73031−60 doi: 10.1007/s11356-023-27458-4 |
[3] |
Sable H, Singh V, Kumar V, Roy A, Pandit S, et al. 2024. Toxicological and bioremediation profiling of nonessential heavy metals (mercury, chromium, cadmium, aluminium) and their impact on human health: A review. Toxicologie Analytique et Clinique 36:205−34 doi: 10.1016/j.toxac.2024.03.096 |
[4] |
Afzal A, Mahreen N. 2024. Emerging insights into the impacts of heavy metals exposure on health, reproductive and productive performance of livestock. Frontiers in Pharmacology 15:1375137 doi: 10.3389/fphar.2024.1375137 |
[5] |
Jadaa W, Mohammed H. 2023. Heavy metals–definition, natural and anthropogenic sources of releasing into ecosystems, toxicity, and removal methods–an overview study. Journal of Ecological Engineering 24:249−71 doi: 10.12911/22998993/162955 |
[6] |
Fulke AB, Ratanpal S, Sonker S. 2024. Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. Marine Pollution Bulletin 206:116707 doi: 10.1016/j.marpolbul.2024.116707 |
[7] |
Nriagu J. 2023. Sixty years since the report of global lead pollution. Nature 619:704−6 doi: 10.1038/d41586-023-02196-2 |
[8] |
Huang H, Guan H, Tian ZQ, Chen MM, Tian KK, et al. 2024. Exposure sources, intake pathways and accumulation of lead in human blood. Soil Security 15:100150 doi: 10.1016/j.soisec.2024.100150 |
[9] |
Moyebi OD, Lebbie T, Carpenter DO. 2024. Standards for levels of lead in soil and dust around the world. Reviews on Environmental Health. https://doi.org/10.1515/reveh-2024-0030 |
[10] |
Raj K, Das AP. 2023. Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environmental Chemistry and Ecotoxicology 5:79−85 doi: 10.1016/j.enceco.2023.02.001 |
[11] |
Sample L. 2024. Lead Exposure in Children: Failure to Protect the Most Vulnerable. The Journal of Pediatric Pharmacology and Therapeutics 29:212−14 doi: 10.5863/1551-6776-29.3.212 |
[12] |
Ratageri VH. 2025. Lead exposure: the silent threat stifling future generations. Indian Journal of Pediatric 92:112−13 doi: 10.1007/s12098-024-05267-y |
[13] |
Sahu MC, Yogeshbhai MR, Oza H, Upadhyay K, Chanania K, et al. 2024. Blood lead levels in pregnant women and their newborn infants at an Indian teaching hospital. Journal of Family Medicine and Primary Care 13:348−55 doi: 10.4103/jfmpc.jfmpc_963_23 |
[14] |
Kinuthia GK, Ngure V, Beti D, Lugalia R, Wangila A, et al. 2020. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Scientific Reports 10:8434 doi: 10.1038/s41598-020-65359-5 |
[15] |
Ayach J, El Malti W, Duma L, Lalevée J, Al Ajami M, et al. 2024. Comparing conventional and advanced approaches for heavy metal removal in wastewater treatment: an in-depth review emphasizing filter-based strategies. Polymers 16:1959 doi: 10.3390/polym16141959 |
[16] |
Jasim AQ, Ajjam SK. 2024. Removal of heavy metal ions from wastewater using ion exchange resin in a batch process with kinetic isotherm. South African Journal of Chemical Engineering 49:43−54 doi: 10.1016/j.sajce.2024.04.002 |
[17] |
Villena-Martínez EM, Alvizuri-Tintaya PA, Lora-García J, Torregrosa-López JI, Lo-Iacono-Ferreira VJ. 2022. Reverse osmosis modeling study of lead and arsenic removal from drinking water in Tarija and La Paz, Bolivia. Processes 10:1889 doi: 10.3390/pr10091889 |
[18] |
Hama Aziz KH, Mustafa FS. 2024. Advanced oxidation processes for the decontamination of heavy metal complexes in aquatic systems: A review. Case Studies in Chemical and Environmental Engineering 9:100567 doi: 10.1016/j.cscee.2023.100567 |
[19] |
Deb A, Das S, Debnath A. 2023. Fabrication and characterization of organometallic nanocomposite for efficient abatement of dye laden wastewater: CCD optimization, adsorption mechanism, co-existing ions, and cost analysis. Chemical Physics Letters 830:140820 doi: 10.1016/j.cplett.2023.140820 |
[20] |
Benalia A, Atime L, Baatache O, Khalfaoui A, Ghomrani AF, et al. 2024. Removal of lead in water by coagulation flocculation process using Cactus-based natural coagulant: optimization and modeling by response surface methodology (RSM). Environmental Monitoring and Assessment 196:244 doi: 10.1007/s10661-024-12412-9 |
[21] |
Ratan S, Srivastava A, Gangwar C, Nayak R, Pandey V, et al. 2024. Adsorption of Pb(II) on Modified Ground Nut Shell (MGNS): Isotherm, kinetic, and thermodynamic study. Indian Journal of Engineering and Materials Sciences 31:425−33 doi: 10.56042/ijems.v31i3.7847 |
[22] |
Shakir HA, Ali Alsaffar M, Mageed AK, Sukkar KA, Abdel Ghany MA. 2024. Optimizing photocatalytic lead removal from wastewater using ZnO/ZrO2: a response surface methodology approach. ChemEngineering 8:72 doi: 10.3390/chemengineering8040072 |
[23] |
Castro K, Abejón R. 2024. Removal of heavy metals from wastewaters and other aqueous streams by pressure-driven membrane technologies: an outlook on reverse osmosis, nanofiltration, ultrafiltration and microfiltration potential from a bibliometric analysis. Membranes 14:180 doi: 10.3390/membranes14080180 |
[24] |
Das S, Pal A, Debnath DA. 2023. Polyaniline-coated magnesium ferrite nanocomposite: synthesis, characterization, fabrication cost analysis and dye sorption behavior with scale-up design. Chemistry Select 8:e202300928 doi: 10.1002/slct.202300928 |
[25] |
Ghahremani A, Manteghian M, Kazemzadeh H. 2021. Removing lead from aqueous solution by activated carbon nanoparticle impregnated on lightweight expanded clay aggregate. Journal of Environmental Chemical Engineering 9:104478 doi: 10.1016/j.jece.2020.104478 |
[26] |
Pyrzynska K. 2023. Recent applications of carbon nanotubes for separation and enrichment of lead ion. Separations 10:152 doi: 10.3390/separations10030152 |
[27] |
Wang H, Wang S, Wang S, Fu L, Zhang L. 2023. Efficient metal-organic framework adsorbents for removal of harmful heavy metal Pb(II) from solution: Activation energy and interaction mechanism. Journal of Environmental Chemical Engineering 11:109335 doi: 10.1016/j.jece.2023.109335 |
[28] |
Birniwa AH, Kehili S, Ali M, Musa H, Ali U, et al. 2022. Polymer-based nano-adsorbent for the removal of lead ions: kinetics studies and optimization by response surface methodology. Separations 9:356 doi: 10.3390/separations9110356 |
[29] |
Juturu R, Selvaraj R, Murty VR. 2024. Efficient removal of hexavalent chromium from wastewater using a novel magnetic biochar composite adsorbent. Journal of Water Process Engineering 66:105908 doi: 10.1016/j.jwpe.2024.105908 |
[30] |
Houshiar M, Zebhi F, Razi ZJ, Alidoust A, Askari Z. 2014. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. Journal of Magnetism and Magnetic Materials 371:43−48 doi: 10.1016/j.jmmm.2014.06.059 |
[31] |
Kumar Y, Pramanik P, Das DK. 2019. Electrochemical detection of paracetamol and dopamine molecules using nano-particles of cobalt ferrite and manganese ferrite modified with graphite. Heliyon 5:e02031 doi: 10.1016/j.heliyon.2019.e02031 |
[32] |
Wang W, Ren J, Wang C, Zheng M, Ma Y, et al. 2022. Magnetic Fe3O4/polypyrrole-salicylaldehyde composite for efficient removal of Mn (VII) from aqueous solution by double-layer adsorption. Journal of Applied Polymer Science 139:e52515 doi: 10.1002/app.52515 |
[33] |
Patra C, Shahnaz T, Subbiah S, Narayanasamy S. 2020. Comparative assessment of raw and acid-activated preparations of novel Pongamia pinnata shells for adsorption of hexavalent chromium from simulated wastewater. Environmental Science and Pollution Research 27:14836−51 doi: 10.1007/s11356-020-07979-y |
[34] |
Valsalakumar VC, Sreevalli Y, Archana PK, Joseph AS, Ubaid S, et al. 2024. Removal of anionic dye from textile effluent using zirconium phosphate loaded polyaniline-graphene oxide composite: lab to pilot scale evaluation. Journal of Environmental Management 368:122068 doi: 10.1016/j.jenvman.2024.122068 |
[35] |
Soltani-Nezhad S, Mashreghi A, Hasani S, Rezvan MT, Ziarati A. 2024. Application of Taguchi method to optimize the properties of cobalt ferrite nanoparticles doped by Ca2+ and Gd3+. Inorganic Chemistry Communications 159:111759 doi: 10.1016/j.inoche.2023.111759 |
[36] |
Pourgolmohammad B, Masoudpanah SM, Aboutalebi MR. 2017. Synthesis of CoFe2O4 powders with high surface area by solution combustion method: Effect of fuel content and cobalt precursor. Ceramics International 43:3797−803 doi: 10.1016/j.ceramint.2016.12.027 |
[37] |
Ren J, Wang C, Zhang H, Liu X, Yan T, et al. 2023. Magnetic Core@Shell Fe3O4@Polypyrrole@Sodium dodecyl sulfate composite for enhanced selective removal of dyestuffs and heavy metal ions from complex wastewater. Langmuir 39:10098−11 doi: 10.1021/acs.langmuir.3c01029 |
[38] |
Shyamaldas, Bououdina M, Manoharan C. 2020. Dependence of structure/morphology on electrical/magnetic properties of hydrothermally synthesised cobalt ferrite nanoparticles. Journal of Magnetism and Magnetic Materials 493:165703 doi: 10.1016/j.jmmm.2019.165703 |
[39] |
Hair ML. 1980. Transmission infrared spectroscopy for high surface area oxides. In Vibrational Spectroscopies for Adsorbed Species. Washington, D.C., US: American Chemical Society. pp. 1−11. doi: 10.1021/bk-1980-0137.ch001 |
[40] |
Aziz C, Azhdar B. 2022. Synthesis of dysprosium doped cobalt ferrites nanoparticles by solgel auto-combustion method and influence of grinding techniques on structural, Morphological, and magnetic properties. Journal of Magnetism and Magnetic Materials 542:168577 doi: 10.1016/j.jmmm.2021.168577 |
[41] |
Hussain D, Siddiqui MF, Shirazi Z, Khan TA. 2022. Evaluation of adsorptive and photocatalytic degradation properties of FeWO4/polypyrrole nanocomposite for rose bengal and alizarin red S from liquid phase: Modeling of adsorption isotherms and kinetics data. Environmental Progress and Sustainable Energy 41:e13822 doi: 10.1002/ep.13822 |
[42] |
Yuan L, Wan C, Ye X, Wu F. 2016. Facial synthesis of silver-incorporated conductive polypyrrole submicron spheres for supercapacitors. Electrochimica Acta 213:115−23 doi: 10.1016/j.electacta.2016.06.165 |
[43] |
Ali H, Ismail AM. 2023. Fabrication of Magnetic Fe3O4/Polypyrrole/Carbon Black Nanocomposite for Effective Uptake of Congo Red and Methylene Blue Dye: Adsorption Investigation and Mechanism. Journal of Polymers and the Environment 31:976−998 doi: 10.1007/s10924-022-02663-3 |
[44] |
Taha AA, Kandil S, Mohamed LA, Sallam MG, Heiba HF. 2023. Surface investigations of selective biosorption and reduction of hexavalent chromium ions Cr(VI) over chitosan@MoO3 and chitosan-cellulose@MoO3 biocomposite. Journal of Molecular Structure 1288:135716 doi: 10.1016/j.molstruc.2023.135716 |
[45] |
Sadeghi MM, Rad AS, Ardjmand M, Mirabi A. 2018. Preparation of magnetic nanocomposite based on polyaniline/Fe3O4 towards removal of lead (II) ions from real samples. Synthetic Metals 245:1−9 doi: 10.1016/j.synthmet.2018.08.001 |
[46] |
Arabahmadi V, Ghorbani M. 2017. Pb(II) removal from water using surface modified polythiophene coated rice husk ash nanocomposite. Inorganic and Nano-Metal Chemistry 47:1614−24 doi: 10.1080/24701556.2017.1357589 |
[47] |
Masoud MS, Haggag SS, Heiba HF, Abd El-Hamed OH, Habila NS, et al. 2023. Comparative adsorption affinities of nano-metal oxides towards Cr(VI): synthesis, characterization, kinetics, isotherms, thermodynamic and techno-economics study. Environmental Processes 10:33 doi: 10.1007/s40710-023-00651-w |
[48] |
Bushra R, Naushad M, Adnan R, ALOthman ZA, Rafatullah M. 2015. Polyaniline supported nanocomposite cation exchanger: Synthesis, characterization and applications for the efficient removal of Pb2+ ion from aqueous medium. Journal of Industrial and Engineering Chemistry 21:1112−18 doi: 10.1016/j.jiec.2014.05.022 |
[49] |
Budhiraja T, Rawat V, Kimothi S, Dumka UC, Gupta R, et al. 2024. Low temperature physical activation of raw charcoal for excellent dye adsorption kinetics. Fullerenes Nanotubes and Carbon Nanostructures 33:441−55 doi: 10.1080/1536383X.2024.2415342 |
[50] |
Ghasemi M, Naushad M, Ghasemi N, Khosravi-fard Y. 2014. A novel agricultural waste based adsorbent for the removal of Pb(II) from aqueous solution: Kinetics, equilibrium and thermodynamic studies. Journal of Industrial and Engineering Chemistry 20:454−61 doi: 10.1016/j.jiec.2013.05.002 |
[51] |
Chen K, He J, Li Y, Cai X, Zhang K, et al. 2017. Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. Journal of Colloid and Interface Science 494:307−16 doi: 10.1016/j.jcis.2017.01.082 |
[52] |
Rafiei HR, Shirvani M, Ogunseitan OA. 2016. Removal of lead from aqueous solutions by a poly(acrylic acid)/bentonite nanocomposite. Applied Water Science 6:331−38 doi: 10.1007/s13201-014-0228-0 |
[53] |
Tan Y, Chen M, Hao Y. 2012. High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano-particles. Chemical Engineering Journal 191:104−11 doi: 10.1016/j.cej.2012.02.075 |
[54] |
Naushad M, ALOthman ZA, Awual MR, Alam MM, Eldesoky GE. 2015. Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger. Ionics 21:2237−45 doi: 10.1007/s11581-015-1401-7 |
[55] |
Rusmin R, Sarkar B, Tsuzuki T, Kawashima N, Naidu R. 2017. Removal of lead from aqueous solution using superparamagnetic palygorskite nanocomposite: material characterization and regeneration studies. Chemosphere 186:1006−15 doi: 10.1016/j.chemosphere.2017.08.036 |
[56] |
Çelik MS, Çaylak O, Kütük N, Yenidünya AF, Çetinkaya S, et al. 2025. Removal of lead ions (Pb2+) from aqueous solution using chitosan/starch composite material: experimental and density functional theory findings. Biomass Conversion and Biorefinery 15:1041−56 doi: 10.1007/s13399-024-05287-w |
[57] |
Weber TW, Chakravorti RK. 1974. Pore and solid diffusion models for fixed bed adsorbers. American Institute of Chemical Engineers 20:228−38 doi: 10.1002/aic.690200204 |
[58] |
Freundlich H. 1906. Über die Adsorption in Lösungen [Over the Adsorption in Solution]. Zeitschrift für Physikalische Chemie [Physical Chemistry and Chemical Physics] 57:385−470 doi: 10.1515/zpch-1907-5723 |