[1]

Ahmad P, Sarwat M, Sharma S. 2008. Reactive oxygen species, antioxidants and signaling in plants. Journal of Plant Biology 51:167−73

doi: 10.1007/BF03030694
[2]

Guo X, Yu X, Xu Z, Zhao P, Zou L, et al. 2022. CC-type glutaredoxin, MeGRXC3, associates with catalases and negatively regulates drought tolerance in cassava (Manihot esculenta Crantz). Plant Biotechnology Journal 20:2389−405

doi: 10.1111/pbi.13920
[3]

Orek C. 2023. A review of the functions of transcription factors and related genes involved in cassava (Manihot Esculenta Crantz) response to drought stress. Tropical Plants 2:14

doi: 10.48130/tp-2023-0014
[4]

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30

doi: 10.1016/j.plaphy.2010.08.016
[5]

Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends In Plant Science 7:405−10

doi: 10.1016/S1360-1385(02)02312-9
[6]

Zok A, Oláh R, Hideg É, Horváth VG, Kós PB, et al. 2010. Effect of Medicago sativa ferritin gene on stress tolerance in transgenic grapevine. Plant Cell, Tissue and Organ Culture 100:339−44

doi: 10.1007/s11240-009-9641-8
[7]

Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, et al. 2010. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Annals of Botany 105:811−22

doi: 10.1093/aob/mcp128
[8]

Zhang H, Song J, Dong F, Li Y, Ge S, et al. 2023. Multiple roles of wheat ferritin genes during stress treatment and TaFER5D-1 as a positive regulator in response to drought and salt tolerance. Plant Physiology and Biochemistry 202:107921

doi: 10.1016/j.plaphy.2023.107921
[9]

Tarantino D, Casagrande F, Soave C, Murgia I. 2010. Knocking out of the mitochondrial AtFer4 ferritin does not alter response of Arabidopsis plants to abiotic stresses. Journal of Plant Physiol 167:453−60

doi: 10.1016/j.jplph.2009.10.015
[10]

Wang B, Guo X, Zhao P, Ruan M, Yu X, et al. 2017. Molecular diversity analysis, drought related marker-traits association mapping and discovery of excellent alleles for 100-day old plants by EST-SSRs in cassava germplasms (Manihot esculenta Cranz). Plos One 12:e0177456

doi: 10.1371/journal.pone.0177456
[11]

Li S, Zhao P, Yu X, Liao W, Peng M, et al. 2022. Cell signaling during drought and/or cold stress in cassava. Tropical Plants 1:1−7

doi: 10.48130/tp-2022-0006
[12]

Zhao P, Guo X, Wang B, Zhang X, Sun J, et al. 2021. Overexpression of MeH1.2 gene inhibited plant growth and increased branch root differentiation in transgenic cassava. Crop Science 61:2639−2650

doi: 10.1002/csc2.20455
[13]

Ruan MB, Yang YL, Li KM, Guo X, Wang B, et al. 2018. Identification and characterization of drought-responsive CC-type glutaredoxins from cassava cultivars reveals their involvement in ABA signalling. BMC Plant Biology 18:329

doi: 10.1186/s12870-018-1528-6
[14]

Guo X, Yu X, Lin C, Zhao P, Wang B, et al. 2023. Down-regulation of MeMYB2 leads to anthocyanin accumulation and increases chilling tolerance in cassava (Manihot esculenta Crantz). The Crop Journal 11:1181−91

doi: 10.1016/j.cj.2023.03.009
[15]

Cheng Z, Lei N, Li S, Liao W, Shen J, et al. 2019. The regulatory effects of MeTCP4 on cold stress tolerance in Arabidopsis thaliana: a transcriptome analysis. Plant Physiology and Biochemistry 138:9−16

doi: 10.1016/j.plaphy.2019.02.015
[16]

Xu J, Duan X, Yang J, Beeching JR, Zhang P. 2013. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiology 161:1517−28

doi: 10.1104/pp.112.212803
[17]

Xu J, Duan X, Yang J, Beeching JR, Zhang P. 2013. Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signaling & Behavior 8:e24525

doi: 10.4161/psb.24525
[18]

Ruan MB, Guo X, Wang B, Yang YL, Li WQ, et al. 2017. Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta). Journal of Experimental Botany 68:3657−72

doi: 10.1093/jxb/erx202
[19]

Bai Y, Dong Y, Zheng L, Zeng H, Wei Y, et al. 2024. Cassava phosphatase PP2C1 modulates thermotolerance via fine-tuning dephosphorylation of antioxidant enzymes. Plant Physiology 194:2724−38

doi: 10.1093/plphys/kiae009
[20]

Yan P, Zeng Y, Shen W, Tuo D, Li X, et al. 2020. Nimble cloning: a simple, versatile, and efficient system for standardized molecular cloning. Frontiers in Bioengineering and Biotechnology 7:460

doi: 10.3389/fbioe.2019.00460
[21]

Li K, Li Y, Liu C, Li M, Bao R, et al. 2024. Protein kinase MeSnRK2.3 positively regulates starch biosynthesis by interacting with the transcription factor MebHLH68 in cassava. Journal of Experimental Botany 75:6369−87

doi: 10.1093/jxb/erae343
[22]

Li R, Wang J, Xu L, Sun M, Yi K, et al. 2020. Functional analysis of phosphate transporter OsPHT4 family members in rice. Rice Science 27:493−503

doi: 10.1016/j.rsci.2020.09.006
[23]

Mhatre M, Srinivas L, Ganapathi TR. 2011. Enhanced iron and zinc accumulation in genetically engineered pineapple plants using soybean Ferritin gene. Biological Trace Element Research 144:1219−28

doi: 10.1007/s12011-011-9092-z
[24]

Kumar GBS, Srinivas L, Ganapathi TR. 2011. Iron fortification of banana by the expression of Soybean ferritin. Biological Trace Element Research 142:232−41

doi: 10.1007/s12011-010-8754-6
[25]

Boonyaves K, Gruissem W, Bhullar NK. 2016. NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and Ferritin genes to increase iron in rice grains. Plant Molecular Biology 90:207−15

doi: 10.1007/s11103-015-0404-0
[26]

Li QY, Niu HB, Yin J, Wang MB, Shao HB, et al. 2008. Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloids and Surfaces B: Biointerfaces 65:220−25

doi: 10.1016/j.colsurfb.2008.04.007
[27]

Fobis-Loisy I, Loridon K, Lobréaux S, Lebrun M, Briat JF. 1995. Structure and differential expression of two maize ferritin genes in response to iron and abscisic acid. European Journal of Biochemistry 231:609−19

doi: 10.1111/j.1432-1033.1995.0609d.x
[28]

Jithesh MN, Prashanth SR, Sivaprakash KR, Parida A. 2006. Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Reports 25:865−76

doi: 10.1007/s00299-006-0127-4
[29]

Chen J, Song Y, Zhang H, Zhang D. 2013. Genome-wide analysis of gene expression in response to drought stress in Populus simonii. Plant Molecular Biology Reporter 31:946−62

doi: 10.1007/s11105-013-0563-6
[30]

Stein RJ, Ricachenevsky FK, Fett JP. 2009. Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2). Plant Science 177:563−69

doi: 10.1016/j.plantsci.2009.08.001
[31]

Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM. 2008. Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Molecular Biology 66:361−78

doi: 10.1007/s11103-007-9274-4
[32]

Han HJ, Peng RH, Zhu B, Fu XY, Zhao W, et al. 2014. Gene expression profiles of arabidopsis under the stress of methyl viologen: a microarray analysis. Molecular Biology Reports 41:7089−102

doi: 10.1007/s11033-014-3396-y
[33]

Petit JM, Briat JF, Lobréaux S. 2001. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. The Biochemical Journal 359:575−82

doi: 10.1042/bj3590575
[34]

Shevyakova NI, Eshinimaeva BT, Kuznetsov VV. 2011. Expression of ferritin gene in Mesembryanthemum crystallinum plants under different supply with iron and different intensity of oxidative stress. Russian Journal of Plant Physiology 58:768−75

doi: 10.1134/S1021443711050219
[35]

Tarantino D, Vannini C, Bracale M, Campa M, Soave C, et al. 2005. Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances paraquat-induced photooxidative stress and nitric oxide-induced cell death. Planta 221:757−65

doi: 10.1007/s00425-005-1485-9
[36]

Fernando VCD, Al Khateeb W, Belmonte MF, Schroeder DF. 2018. Role of Arabidopsis ABF1/3/4 during det1 germination in salt and osmotic stress conditions. Plant Molecular Biology 97:149−63

doi: 10.1007/s11103-018-0729-6
[37]

Wang R, Li J, Miao H, Yan H. 2020. Cloning and expression under abiotic stress of Br14-3-3 in Brassica rapa subsp. rapifera. Acta Horticulturae Sinica 47:1301−11

doi: 10.16420/j.issn.0513-353x.2020-0119
[38]

Özfi̇dan-Konakçi C, Yildiztugay E, Elbasan F, Yildiztugay A, Küçüködük M. 2020. Assessment of antioxidant system and enzyme/nonenzyme regulation related to ascorbate-glutathione cycle in ferulic acid-treated Triticumaestivum L. roots under boron toxicity. Turkish Journal of Botany 44:47−61

doi: 10.3906/bot-1904-23