[1]

Meng X, Liu S, Dong T, Xu T, Ma D, et al. 2020. Comparative transcriptome and proteome analysis of salt-tolerant and salt-sensitive sweet potato and overexpression of IbNAC7 confers salt tolerance in Arabidopsis. Frontiers in Plant Science 11:572540

doi: 10.3389/fpls.2020.572540
[2]

Abid M, Gu S, Zhang Y, Sun S, Li Z, et al. 2022. Comparative transcriptome and metabolome analysis reveal key regulatory defense networks and genes involved in enhanced salt tolerance of Actinidia (kiwifruit). Horticulture Research 9:uhac189

doi: 10.1093/hr/uhac189
[3]

Mohamed IAA, Shalby N, El-Badri AM, Batool M, Wang C, et al. 2022. RNA-seq analysis revealed key genes associated with salt tolerance in rapeseed germination through carbohydrate metabolism, hormone, and MAPK signaling pathways. Industrial Crops and Products 176:114262

doi: 10.1016/j.indcrop.2021.114262
[4]

Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, et al. 2011. Recent updates on salinity stress in rice: from physiological to molecular responses. Critical Reviews in Plant Sciences 30:329−77

doi: 10.1080/07352689.2011.587725
[5]

Zhang J, Flowers TJ, Wang S. 2010. Mechanisms of sodium uptake by roots of higher plants. Plant and Soil 326:45−60

doi: 10.1007/s11104-009-0076-0
[6]

Morton MJL, Awlia M, Al-Tamimi N, Saade S, Pailles Y, et al. 2019. Salt stress under the scalpel – dissecting the genetics of salt tolerance. The Plant Journal 97:148−63

doi: 10.1111/tpj.14189
[7]

Hopmans JW, Qureshi AS, Kisekka I, Munns R, Grattan SR, et al. 2021. Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy 169:1−191

doi: 10.1016/bs.agron.2021.03.001
[8]

Dagar JC, Gupta SR. 2020. Agroforestry interventions for rehabilitating salt-affected and waterlogged marginal landscapes. In Agroforestry for Degraded Landscapes, eds. Dagar JC, Gupta SR, Teketay D. Singapore: Springer. pp. 111–62. doi: 10.1007/978-981-15-6807-7_5

[9]

Läuchli A, Grattan SR. 2011. Plant responses to saline and sodic conditions. In Agricultural Salinity Assessment and Management, eds Wallendar WW, Tanji KK. Reston, VA: American Society of Civil Engineers (ASCE). pp. 169−205. doi: 10.1061/9780784411698.ch06

[10]

Xu Z, Wang M, Ren T, Li K, Li Y, et al. 2021. Comparative transcriptome analysis reveals the molecular mechanism of salt tolerance in Apocynum venetum. Plant Physiology and Biochemistry 167:816−30

doi: 10.1016/j.plaphy.2021.08.043
[11]

Van Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71:403−33

doi: 10.1146/annurev-arplant-050718-100005
[12]

Zhu D, Liu J, Duan W, Sun H, Zhang L, et al. 2023. Analysis of the chloroplast crotonylome of wheat seedling leaves reveals the roles of crotonylated proteins involved in salt-stress responses. Journal of Experimental Botany 74:2067−82

doi: 10.1093/jxb/erad006
[13]

Jiang Y. 2023. Application of gamma-aminobutyric acid and nitric oxide on turfgrass stress resistance: current knowledge and perspectives. Grass Research 3:3

doi: 10.48130/GR-2023-0003
[14]

Hao S, Wang Y, Yan Y, Liu Y, Wang J, et al. 2021. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae 7:132

doi: 10.3390/horticulturae7060132
[15]

Liang X, Zhang L, Natarajan SK, Becker DF. 2013. Proline mechanisms of stress survival. Antioxidants & Redox Signaling 19:998−1011

doi: 10.1089/ars.2012.5074
[16]

Jiang J, Guo Z, Sun X, Jiang Y, Xie F, et al. 2023. Role of proline in regulating turfgrass tolerance to abiotic stress. Grass Research 3:2

doi: 10.48130/GR-2023-0002
[17]

Uddin MK, Juraimi AS. 2013. Salinity tolerance turfgrass: history and prospects. The Scientific World Journal 2013:409413

doi: 10.1155/2013/409413
[18]

Byerrum RU, Sato CS, Ball CD. 1956. Utilization of betaine as a methyl group donor in tobacco. Plant Physiology 31:374−77

doi: 10.1104/pp.31.5.374
[19]

Guo J, Lu X, Tao Y, Guo H, Min W. 2022. Comparative ionomics and metabolic responses and adaptive strategies of cotton to salt and alkali stress. Frontiers in Plant Science 13:871387

doi: 10.3389/fpls.2022.871387
[20]

Hasanuzzaman M, Bhuyan MHM, Anee TI, Parvin K, Nahar K, et al. 2019. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384

doi: 10.3390/antiox8090384
[21]

Singh N, Bhardwaj RD. 2016. Ascorbic acid alleviates water deficit induced growth inhibition in wheat seedlings by modulating levels of endogenous antioxidants. Biologia 71:401−13

doi: 10.1515/biolog-2016-0050
[22]

White PJ, Broadley MR. 2003. Calcium in plants. Annals of Botany 92:487−511

doi: 10.1093/aob/mcg164
[23]

Colcombet J, Hirt H. 2008. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. The Biochemical Journal 413:217−26

doi: 10.1042/BJ20080625
[24]

Ryu H, Cho YG. 2015. Plant hormones in salt stress tolerance. Journal of Plant Biology 58:147−55

doi: 10.1007/s12374-015-0103-z
[25]

Sudhir P, Murthy SDS. 2004. Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481−86

doi: 10.1007/S11099-005-0001-6
[26]

Yang Z, Li JL, Liu LN, Xie Q, Sui N. 2020. Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet Sorghum. Frontiers in Plant Science 10:1722

doi: 10.3389/fpls.2019.01722
[27]

Fardus J, Hossain MS, Fujita M. 2021. Modulation of the antioxidant defense system by exogenous L-glutamic acid application enhances salt tolerance in lentil (Lens culinaris Medik.). Biomolecules 11:587

doi: 10.3390/biom11040587
[28]

Zhang X, Goatley M, Wang K, Conner J, Brown I, et al. 2023. Methyl jasmonate enhances salt stress tolerance associated with antioxidant and cytokinin alteration in perennial ryegrass. Grass Research 3:6

doi: 10.48130/GR-2023-0006
[29]

Xu L, Zhang W, Niu D, Liu X. 2024. Effects of abiotic stress on chlorophyll metabolism. Plant Science 342:112030

doi: 10.1016/j.plantsci.2024.112030
[30]

Jahn D, Verkamp E, Söll D. 1992. Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends in Biochemical Sciences 17:215−18

doi: 10.1016/0968-0004(92)90380-R
[31]

Yang W, Yuan Y, Yang P, Li S, Ma S, et al. 2023. ZmGluTR1 is involved in chlorophyll biosynthesis and is essential for maize development. Journal of Plant Physiology 290:154115

doi: 10.1016/j.jplph.2023.154115
[32]

Hou Z, Yang Y, Hedtke B, Grimm B. 2019. Fluorescence in blue light (FLU) is involved in inactivation and localization of glutamyl-tRNA reductase during light exposure. The Plant Journal 97:517−29

doi: 10.1111/tpj.14138
[33]

Richter AS, Banse C, Grimm B. 2019. The GluTR-binding protein is the heme-binding factor for feedback control of glutamyl-tRNA reductase. Elife 13:e46300

doi: 10.7554/eLife.46300
[34]

Wang P, Liang F, Wittmann D, Siegel A, Shan S, et al. 2018. Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 115:E3588−E3596

doi: 10.1073/pnas.1719645115
[35]

Xie Z, Wang J, Wang W, Wang Y, Xu J, et al. 2021. Integrated analysis of the transcriptome and metabolome revealed the molecular mechanisms underlying the enhanced salt tolerance of rice due to the application of exogenous melatonin. Frontiers in Plant Science 11:618680

doi: 10.3389/fpls.2020.618680
[36]

Zhang X, Liu J, Huang Y, Wu H, Hu X, et al. 2022. Comparative transcriptomics reveals the molecular mechanism of the parental lines of maize hybrid An'nong876 in response to salt stress. International Journal of Molecular Sciences 23:5231

doi: 10.3390/ijms23095231
[37]

Zeng A, Chen P, Korth KL, Ping J, Thomas J, et al. 2019. RNA sequencing analysis of salt tolerance in soybean (Glycine max). Genomics 111:629−35

doi: 10.1016/j.ygeno.2018.03.020
[38]

Sallam A, Alqudah AM, Dawood MFA, Baenziger PS, A Börner. 2019. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. International Journal of Molecular Sciences 20:3137

doi: 10.3390/ijms20133137
[39]

Xu Z, Chen X, Lu X, Zhao B, Yang Y, et al. 2021. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Plant Physiology and Biochemistry 160:315−28

doi: 10.1016/j.plaphy.2021.01.027
[40]

Wang Z, Zhang W, Huang W, Biao A, Lin S, et al. 2023. Salt stress affects the fruit quality of Lycium ruthenicum Murr. Industrial Crops and Products 193:116240

doi: 10.1016/j.indcrop.2023.116240
[41]

Kou S, Chen L, Tu W, Scossa F, Wang Y, et al. 2018. The arginine decarboxylase gene ADC1, associated to the putrescine pathway, plays an important role in potato cold-acclimated freezing tolerance as revealed by transcriptome and metabolome analyses. The Plant Journal 96:1283−98

doi: 10.1111/tpj.14126
[42]

Qin X, Yin Y, Zhao J, An W, Fan Y, et al. 2022. Metabolomic and transcriptomic analysis of Lycium chinese and L. ruthenicum under salinity stress. BMC Plant Biology 22:8

doi: 10.1186/s12870-021-03375-x
[43]

Ahn JH, Kim JS, Kim S, Soh HY, Shin H, et al. 2015. De novo transcriptome analysis to identify anthocyanin biosynthesis genes responsible for tissue-specific pigmentation in Zoysiagrass (Zoysia japonica Steud.). PLoS ONE 10:e0137943

doi: 10.1371/journal.pone.0137943
[44]

Zhang J, Zhang Z, Liu W, Li L, Han L, et al. 2022. Transcriptome analysis revealed a positive role of ethephon on chlorophyll metabolism of Zoysia japonica under cold stress. Plants 11:442

doi: 10.3390/plants11030442
[45]

Marcum KB, Anderson SJ, Engelke MC. 1998. Salt gland ion secretion: a salinity tolerance mechanism among five zoysiagrass species. Crop Science 38:806−10

doi: 10.2135/cropsci1998.0011183X003800030031x
[46]

Qian Y, Engelke MC, Foster MJV. 2000. Salinity effects on zoysiagrass cultivars and experimental lines. Crop Science 40:488−92

doi: 10.2135/cropsci2000.402488x
[47]

Hooks T, Masabni J, Ganjegunte G, Sun L, Chandra A, et al. 2022. Salt tolerance of seven genotypes of zoysiagrass (Zoysia spp.). Technology in Horticulture 2:8

doi: 10.48130/TIH-2022-0008
[48]

Maeda Y. 2019. Effects of calcium application on the salt tolerance and sodium excretion from salt glands in zoysiagrass (Zoysia japonica). Grassland Science 65:189−96

doi: 10.1111/grs.12234
[49]

Li S, Jin H, Zhang Q. 2016. The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in zoysiagrass (Zoysia japonica Steud) subjected to short-term salinity stress. Frontiers in Plant Science 7:1221

doi: 10.3389/fpls.2016.01221
[50]

Wang W, Shao A, Xu X, Fan S, Fu J. 2022. Comparative genomics reveals the molecular mechanism of salt adaptation for zoysiagrasses. BMC Plant Biology 22:355

doi: 10.1186/s12870-022-03752-0
[51]

Ma X, Zhang J, Huang B. 2016. Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environmental and Experimental Botany 125:1−11

doi: 10.1016/j.envexpbot.2016.01.002
[52]

Blum A, Ebercon A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21:43−47

doi: 10.2135/cropsci1981.0011183X002100010013x
[53]

Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1−15

doi: 10.1104/pp.24.1.1
[54]

Ma X, Zhang J, Burgess P, Rossi S, Huang B. 2018. Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Environmental and Experimental Botany 145:1−11

doi: 10.1016/j.envexpbot.2017.10.010
[55]

Bhattacharjee S. 2005. Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Current Science 89:1113−21

[56]

Ma X, Yu J, Zhuang L, Shi Y, Meyer W, et al. 2020. Differential regulatory pathways associated with drought-inhibition and post-drought recuperation of rhizome development in perennial grass. Annals of Botany 126:481−97

doi: 10.1093/aob/mcaa099
[57]

Sun S, Ma W, Mi C, Mao P. 2024. Telomerase reverse transcriptase, a telomere length maintenance protein in alfalfa (Medicago sativa), confers Arabidopsis thaliana seeds aging tolerance via modulation of telomere length. International Journal of Biological Macromolecules 277:134388

doi: 10.1016/j.ijbiomac.2024.134388
[58]

Ma D, Liu B, Ge L, Weng Y, Cao X, et al. 2021. Identification and characterization of regulatory pathways involved in early flowering in the new leaves of alfalfa (Medicago sativa L.) by transcriptome analysis. BMC Plant Biology 21:8

doi: 10.1186/s12870-020-02775-9
[59]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[60]

Geng G, Lv C, Stevanato P, Li R, Liu H, et al. 2019. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. International Journal of Molecular Sciences 20:5910

doi: 10.3390/ijms20235910
[61]

Dassanayake M, Larkin JC. 2017. Making plants break a sweat: the structure, function, and evolution of plant salt glands. Frontiers in Plant Science 8:406

doi: 10.3389/fpls.2017.00406
[62]

Breckle SW. 1995. How do halophytes overcome salinity? In Biology of Salt Tolerant Plants. eds eds Khan MA,Ungar IA. Department of Botany, University of Karachi. pp. 199−213

[63]

Yamamoto A, Hashiguchi M, Akune R, Masumoto T, Muguerza M, et al. 2016. The relationship between salt gland density and sodium accumulation/secretion in a wide selection from three Zoysia species. Australian Journal of Botany 64:277−84

[64]

Semenova GA, Fomina IR, Biel KY. 2010. Structural features of the salt glands of the leaf of Distichlis spicata 'Yensen 4a' (Poaceae). Protoplasma 240:75−82

doi: 10.1007/s00709-009-0092-1
[65]

Oi T, Hirunagi K, Taniguchi M, Miyake H. 2013. Salt excretion from the salt glands in Rhodes grass (Chloris gayana Kunth) as evidenced by low-vacuum scanning electron microscopy. Flora - Morphology, Distribution, Functional Ecology of Plants 208:52−57

doi: 10.1016/j.flora.2012.12.006
[66]

Li Q, Song J, Zhou Y, Chen Y, Zhang L, et al. 2022. Full-length transcriptomics reveals complex molecular mechanism of salt tolerance in Bromus inermis L. Frontiers in Plant Science 13:917338

doi: 10.3389/fpls.2022.917338
[67]

Chinnusamy V, Jagendorf A, Zhu JK. 2005. Understanding and improving salt tolerance in plants. Crop Science 45:437−48

doi: 10.2135/cropsci2005.0437
[68]

Bose J, Munns R, Shabala S, Gilliham M, Pogson B, et al. 2017. Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. Journal of Experimental Botany 68:3129−43

doi: 10.1093/jxb/erx142
[69]

Zeng Z, Lin T, Zhao J, Zheng T, Xu L, et al. 2020. OsHemA gene, encoding glutamyl-tRNA reductase (GluTR) is essential for chlorophyll biosynthesis in rice (Oryza sativa). Journal of Integrative Agriculture 19:612−23

doi: 10.1016/S2095-3119(19)62710-3
[70]

Gökçe AF, Gökçe ZNÖ, Junaid MD, Chaudhry UK. 2023. Evaluation of biochemical and molecular response of onion breeding lines to drought and salt stresses. Scientia Horticulturae 311:111802

doi: 10.1016/j.scienta.2022.111802
[71]

Zhao S, Gao H, Luo J, Wang H, Dong Q, et al. 2020. Genome-wide analysis of the light-harvesting chlorophyll a/b-binding gene family in apple (Malus domestica) and functional characterization of MdLhcb4.3, which confers tolerance to drought and osmotic stress. Plant Physiology and Biochemistry 154:517−29

doi: 10.1016/j.plaphy.2020.06.022
[72]

Møller IM. 2001. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Biology 52:561−91

doi: 10.1146/annurev.arplant.52.1.561
[73]

Nagai S, Koide M, Takahashi S, Kikuta A, Aono M, et al. 2007. Induction of isoforms of tetrapyrrole biosynthetic enzymes, AtHEMA2 and AtFC1, under stress conditions and their physiological functions in Arabidopsis. Plant Physiology 144:1039−51

doi: 10.1104/pp.107.100065
[74]

Beale SI. 2005. Green genes gleaned. Trends in Plant Science 10:309−12

doi: 10.1016/j.tplants.2005.05.005
[75]

Santos CV. 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae 103:93−99

doi: 10.1016/j.scienta.2004.04.009
[76]

Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M. 1997. New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. Bioscience, Biotechnology, and Biochemistry 61:2025−28

doi: 10.1271/bbb.61.2025
[77]

Watanabe K, Tanaka T, Hotta Y, Kuramochi H, Takeuchi Y. 2000. Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regulation 32:99−103

doi: 10.1023/A:1006369404273