[1]

Zhang S, Yu Z, Sun L, Liang S, Xu F, et al. 2024. T2T reference genome assembly and genome-wide association study reveal the genetic basis of Chinese bayberry fruit quality. Horticulture Research 11(3):uhae033

doi: 10.1093/hr/uhae033
[2]

Ren H, He Y, Qi X, Zheng X, Zhang S, et al. 2021. The bayberry database: a multiomic database for Myrica rubra, an important fruit tree with medicinal value. BMC Plant Biology 21:452

doi: 10.1186/s12870-021-03232-x
[3]

Tsuda T. 2012. Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Molecular Nutrition & Food Research 56:159−70

doi: 10.1002/mnfr.201100526
[4]

Zhang S, Yu Z, Sun L, Ren H, Zheng X, et al. 2022. An overview of the nutritional value, health properties, and future challenges of Chinese bayberry. PeerJ 10:e13070

doi: 10.7717/peerj.13070
[5]

Liu Y, Wang Q, Wu K, Sun Z, Tang Z, et al. 2023. Anthocyanins' effects on diabetes mellitus and islet transplantation. Critical Reviews in Food Science and Nutrition 63(33):12102−25

doi: 10.1080/10408398.2022.2098464
[6]

Santamarina AB, Calder PC, Estadella D, Pisani LP. 2023. Anthocyanins ameliorate obesity-associated metainflammation: preclinical and clinical evidence. Nutrition Research 114:50−70

doi: 10.1016/j.nutres.2023.04.004
[7]

Wu Y, Han T, Lyu L, Li W, Wu W. 2023. Research progress in understanding the biosynthesis and regulation of plant anthocyanins. Scientia Horticulturae 321:112374

doi: 10.1016/j.scienta.2023.112374
[8]

Ma Y, Ma X, Gao X, Wu W, Zhou B. 2021. Light induced regulation pathway of anthocyanin biosynthesis in plants. International Journal of Molecular Sciences 22(20):11116

doi: 10.3390/ijms222011116
[9]

Maier A, Hoecker U. 2015. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signaling & Behavior 10:e970440

doi: 10.4161/15592316.2014.970440
[10]

Zheng XT, Chen YL, Zhang XH, Cai ML, Yu ZC, et al. 2019. ANS-deficient Arabidopsis is sensitive to high light due to impaired anthocyanin photoprotection. Functional Plant Biology 46:756−65

doi: 10.1071/FP19042
[11]

Lim SH, Song JH, Kim DH, Kim JK, Lee JY, et al. 2016. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1. Plant Cell Reports 35(3):641−53

doi: 10.1007/s00299-015-1909-3
[12]

Zhang Z, Zhou J, Zhao Y, Zhao X, Liu J, et al. 2024. StMYB113 promotes anthocyanin biosynthesis in potato (Solanum tuberosum L.) désirée tubers. Potato Research 67(1):307−24

doi: 10.1007/s11540-023-09639-3
[13]

Sun C, Wang C, Zhang W, Liu S, Wang W, et al. 2021. The R2R3-type MYB transcription factor MdMYB90-like is responsible for the enhanced skin color of an apple bud sport mutant. Horticulture Research 8(1):156

doi: 10.1038/s41438-021-00590-3
[14]

Cui Y, Fan J, Liu F, Li H, Pu Y, et al. 2023. R2R3-MYB transcription factor PhMYB2 positively regulates anthocyanin biosynthesis in Pericallis hybrida. Scientia Horticulturae 322:112446

doi: 10.1016/j.scienta.2023.112446
[15]

Liu Y, Jin H, Zhang Y, Feng X, Dai Y, et al. 2024. A novel three-layer module BoMYB1R1-BoMYB4b/BoMIEL1-BoDFR1 regulates anthocyanin accumulation in kale. The Plant Journal 119(4):1737−50

doi: 10.1111/tpj.16881
[16]

Meng LS, Liu A. 2015. Light signaling induces anthocyanin biosynthesis via AN3 mediated COP1 expression. Plant Signaling & Behavior 10(9):e1001223

doi: 10.1080/15592324.2014.1001223
[17]

Guo X, Wang Y, Zhai Z, Huang T, Zhao D, et al. 2018. Transcriptomic analysis of light-dependent anthocyanin accumulation in bicolored cherry fruits. Plant Physiology and Biochemistry 130:663−77

doi: 10.1016/j.plaphy.2018.08.016
[18]

Zirngibl ME, Araguirang GE, Kitashova A, Jahnke K, Rolka T, et al. 2023. Triose phosphate export from chloroplasts and cellular sugar content regulate anthocyanin biosynthesis during high light acclimation. Plant Communications 4:100423

doi: 10.1016/j.xplc.2022.100423
[19]

Lauria G, Lo Piccolo E, Ceccanti C, Guidi L, Bernardi R, et al. 2023. Supplemental red LED light promotes plant productivity, "photomodulates" fruit quality and increases Botrytis cinerea tolerance in strawberry. Postharvest Biology and Technology 198:112253

doi: 10.1016/j.postharvbio.2023.112253
[20]

Cervantes L, Ariza MT, Gómez-Mora JA, Miranda L, Medina JJ, et al. 2019. Light exposure affects fruit quality in different strawberry cultivars under field conditions. Scientia Horticulturae 252:291−97

doi: 10.1016/j.scienta.2019.03.058
[21]

Hu X, Xu C, Gong J, Li X, Li F, et al. 2024. Biological role of red light supplementation in inositol metabolism during strawberry fruit ripening. Scientia Horticulturae 332:113196

doi: 10.1016/j.scienta.2024.113196
[22]

Zhang K, Lin C, Chen B, Lin Y, Su H, et al. 2024. A light responsive transcription factor CsbHLH89 positively regulates anthocyanidin synthesis in tea (Camellia sinensis). Scientia Horticulturae 327:112784

doi: 10.1016/j.scienta.2023.112784
[23]

Gao C, Zhang Y, Li H, Gao Q, Cheng Y, et al. 2022. Fruit bagging reduces the postharvest decay and alters the diversity of fruit surface fungal community in ' Yali' pear. BMC Microbiology 22:239

doi: 10.1186/s12866-022-02653-4
[24]

Ali MM, Anwar R, Yousef AF, Li B, Luvisi A, et al. 2021. Influence of bagging on the development and quality of fruits. Plants 10(2):358

doi: 10.3390/plants10020358
[25]

Huang X, Hu L, Kong W, Yang C, Xi W. 2022. Red light-transmittance bagging promotes carotenoid accumulation of grapefruit during ripening. Communications Biology 5:303

doi: 10.1038/s42003-022-03270-7
[26]

Wang X, Wei Z, Ma F. 2015. The effects of fruit bagging on levels of phenolic compounds and expression by anthocyanin biosynthetic and regulatory genes in red-fleshed apples. Process Biochemistry 50:1774−82

doi: 10.1016/j.procbio.2015.06.024
[27]

Zhang S, Yu Z, Qi X, Wang Z, Zheng Y, et al. 2021. Construction of a high-density genetic map and identification of leaf trait-related QTLs in Chinese bayberry (Myrica rubra). Frontiers in Plant Science 12:675855

doi: 10.3389/fpls.2021.675855
[28]

Sun L, Yu Q, Zhang S, Yu Z, Liang S, et al. 2024. Genome-wide identification and expression analysis of beta-galactosidase family members in Chinese bayberry (Myrica rubra). Horticulturae 10(3):225

doi: 10.3390/horticulturae10030225
[29]

Ren H, Yu H, Zhang S, Liang S, Zheng X, et al. 2019. Genome sequencing provides insights into the evolution and antioxidant activity of Chinese bayberry. BMC Genomics 20:458

doi: 10.1186/s12864-019-5818-7
[30]

Wei H, Chen X, Zong X, Shu H, Gao D, et al. 2015. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.). PLoS One 10:e0121164

doi: 10.1371/journal.pone.0121164
[31]

Shen C, Wang J, Jin X, Liu N, Fan X, et al. 2017. Potassium enhances the sugar assimilation in leaves and fruit by regulating the expression of key genes involved in sugar metabolism of Asian pears. Plant Growth Regulation 83(2):287−300

doi: 10.1007/s10725-017-0294-z
[32]

Romero Rodriguez MA, Vazquez Oderiz ML, Lopez Hernandez J, Lozano JS. 1992. Determination of vitamin C and organic acids in various fruits by HPLC. Journal of Chromatographic Science 30:433−37

doi: 10.1093/chromsci/30.11.433
[33]

Li S, Zhang Y, Shi L, Cao S, Chen W, et al. 2023. Involvement of a MYB transcription factor in anthocyanin biosynthesis during Chinese bayberry (Morella rubra) fruit ripening. Biology 12(7):894

doi: 10.3390/biology12070894
[34]

Wu D, Cheng H, Chen J, Ye X, Liu Y. 2019. Characteristics changes of Chinese bayberry (Myrica rubra) during different growth stages. Journal of Food Science and Technology 56(2):654−62

doi: 10.1007/s13197-018-3520-4
[35]

Huang H, Zhao L, Zhang B, Huang W, Zhang Z, et al. 2024. Integrated analysis of the metabolome and transcriptome provides insights into anthocyanin biosynthesis of cashew apple. Food Research International 175:113711

doi: 10.1016/j.foodres.2023.113711
[36]

Wu X, Zhang S, Yu Z, Sun L, Liang S, et al. 2023. Molecular cloning and functional analysis of Chinese bayberry MrSPL4 that enhances growth and flowering in transgenic tobacco. Frontiers in Plant Science 14:1127228

doi: 10.3389/fpls.2023.1127228
[37]

Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L. 2014. Light-controlled flavonoid biosynthesis in fruits. Frontiers in Plant Science 5:534

doi: 10.3389/fpls.2014.00534
[38]

Jiang M, Ren L, Lian H, Liu Y, Chen H. 2016. Novel insight into the mechanism underlying light-controlled anthocyanin accumulation in eggplant (Solanum melongena L.). Plant Science 249:46−58

doi: 10.1016/j.plantsci.2016.04.001
[39]

Shi L, Chen X, Chen W, Zheng Y, Yang Z. 2018. Comparative transcriptomic analysis of white and red Chinese bayberry (Myrica rubra) fruits reveals flavonoid biosynthesis regulation. Scientia Horticulturae 235:9−20

doi: 10.1016/j.scienta.2018.02.076
[40]

Dong F, Wang C, Sun X, Bao Z, Dong C, et al. 2019. Sugar metabolic changes in protein expression associated with different light quality combinations in tomato fruit. Plant Growth Regulation 88(3):267−82

doi: 10.1007/s10725-019-00506-1
[41]

Zhang Q, Lin L, Fang F, Cui B, Zhu C, et al. 2023. Dissecting the functions of COP1 in the UVR8 pathway with a COP1 variant in Arabidopsis. The Plant Journal 113(3):478−92

doi: 10.1111/tpj.16059
[42]

Ponnu J, Riedel T, Penner E, Schrader A, Hoecker U. 2019. Cryptochrome 2 competes with COP1 substrates to repress COP1 ubiquitin ligase activity during Arabidopsis photomorphogenesis. Proceedings of the National Academy of Sciences of the United States of America 116(52):27133−41

doi: 10.1073/pnas.1909181116
[43]

Wang Y, Wang L, Guan Z, Chang H, Ma L, et al. 2022. Structural insight into UV-B-activated UVR8 bound to COP1. Science Advances 8:eabn3337

doi: 10.1126/sciadv.abn3337
[44]

Kreiss M, Haas FB, Hansen M, Rensing SA, Hoecker U. 2023. Co-action of COP1, SPA and cryptochrome in light signal transduction and photomorphogenesis of the moss Physcomitrium patens. The Plant Journal 114:159−75

doi: 10.1111/tpj.16128
[45]

Li YY, Mao K, Zhao C, Zhao XY, Zhang HL, et al. 2012. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology 160(2):1011−22

doi: 10.1104/pp.112.199703
[46]

Ly V, Collister DT, Fonseca E, Liao TS, Schroeder DF. 2015. Light and COP1 regulate level of overexpressed DET1 protein. Plant Science 231:114−23

doi: 10.1016/j.plantsci.2014.11.011
[47]

Llorente B, Martinez-Garcia JF, Stange C, Rodriguez-Concepcion M. 2017. Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light. Current Opinion in Plant Biology 37:49−55

doi: 10.1016/j.pbi.2017.03.011
[48]

Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, et al. 1998. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Molecular Cell 1(2):213−22

doi: 10.1016/S1097-2765(00)80022-2
[49]

Qiu Z, Wang H, Li D, Yu B, Hui Q, et al. 2019. Identification of candidate HY5-dependent and-independent regulators of anthocyanin biosynthesis in tomato. Plant and Cell Physiology 60(3):643−56

doi: 10.1093/pcp/pcy236
[50]

Li Y, Xu P, Chen G, Wu J, Liu Z, et al. 2020. FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5-bHLH9 transcription complex in strawberry fruits. Plant and Cell Physiology 61(4):826−37

doi: 10.1093/pcp/pcaa010
[51]

Zhang Z, Chen C, Lin H, Jiang C, Zhang Y, et al. 2024. The VvHY5-VvMYB24-VvMYBA1 transcription factor cascade regulates the biosynthesis of anthocyanin in grape. Horticultural Plant Journal In Press

doi: 10.1016/j.hpj.2024.02.005