[1]

Zhang Z, Liao H, Lucas WJ. 2014. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. Journal of Integrative Plant Biology 56:192−220

doi: 10.1111/jipb.12163
[2]

Abel S, Ticconi CA, Delatorre CA. 2002. Phosphate sensing in higher plants. Physiologia Plantarum 115:1−8

doi: 10.1034/j.1399-3054.2002.1150101.x
[3]

Le Pioufle O, Ganoudi M, Calonne-Salmon M, Ben Dhaou F, Declerck S. 2019. Rhizophagus irregularis MUCL 41833 improves phosphorus uptake and water use efficiency in maize plants during recovery from drought stress. Frontiers in Plant Science 10:897

doi: 10.3389/fpls.2019.00897
[4]

Menezes-Blackburn D, Giles C, Darch T, George TS, Blackwell M, et al. 2018. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant and Soil 427:5−16

doi: 10.1007/s11104-017-3362-2
[5]

Paz-Ares J, Puga MI, Rojas-Triana M, Martinez-Hevia I, Diaz S, et al. 2022. Plant adaptation to low phosphorus availability: core signaling, crosstalks, and applied implications. Molecular Plant 15:104−24

doi: 10.1016/j.molp.2021.12.005
[6]

Yue W, Ying Y, Wang C, Zhao Y, Dong C, et al. 2017. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters. The Plant Journal 90:1040−51

doi: 10.1111/tpj.13516
[7]

Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, et al. 2016. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352:986−90

doi: 10.1126/science.aad9858
[8]

Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, et al. 2012. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytologist 193:842−51

doi: 10.1111/j.1469-8137.2011.04002.x
[9]

Jung JY, Ried MK, Hothorn M, Poirier Y. 2018. Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain. Current Opinion in Biotechnology 49:156−62

doi: 10.1016/j.copbio.2017.08.012
[10]

Wang Z, Ruan W, Shi J, Zhang L, Xiang D, et al. 2014. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proceedings of the National Academy of Sciences of the United States of America 111:14953−58

doi: 10.1073/pnas.1404680111
[11]

Srivastava S, Upadhyay MK, Srivastava AK, Abdelrahman M, Suprasanna P, et al. 2018. Cellular and subcellular phosphate transport machinery in plants. International Journal of Molecular Sciences 19:1914

doi: 10.3390/ijms19071914
[12]

Quistgaard EM, Löw C, Guettou F, Nordlund P. 2016. Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nature Reviews Molecular Cell Biology 17:123−32

doi: 10.1038/nrm.2015.25
[13]

Liu J, Fu S, Yang L, Luan M, Zhao F, et al. 2016. Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants. Plant Signaling & Behavior 11:e1213474

doi: 10.1080/15592324.2016.1213474
[14]

Wang C, Huang W, Ying Y, Li S, Secco D, et al. 2012. Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytologist 196:139−48

doi: 10.1111/j.1469-8137.2012.04227.x
[15]

Wang Z, Zheng Z, Song L, Liu D. 2018. Functional characterization of Arabidopsis PHL4 in plant response to phosphate starvation. Frontiers in Plant Science 9:1432

doi: 10.3389/fpls.2018.01432
[16]

Yang J, Wang L, Mao C, Lin H. 2017. Characterization of the rice NLA family reveals a key role for OsNLA1 in phosphate homeostasis. Rice 10:52

doi: 10.1186/s12284-017-0193-y
[17]

Zhu J, Li M, Whelan M. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Science of The Total Environment 612:522−37

doi: 10.1016/j.scitotenv.2017.08.095
[18]

Cho H, Bouain N, Zheng L, Rouached H. 2021. Plant resilience to phosphate limitation: current knowledge and future challenges. Critical Reviews in Biotechnology 41:63−71

doi: 10.1080/07388551.2020.1825321
[19]

Vance CP, Uhde-Stone C, Allan DL. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157:423−47

doi: 10.1046/j.1469-8137.2003.00695.x
[20]

Hinsinger P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil 237:173−95

doi: 10.1023/A:1013351617532
[21]

Andersson H, Bergström L, Djodjic F, Ulén B, Kirchmann H. 2013. Topsoil and subsoil properties influence phosphorus leaching from four agricultural soils. Journal of Environmental Quality 42:455−63

doi: 10.2134/jeq2012.0224
[22]

Buso GSC, Bliss FA. 1988. Variability among lettuce cultivars grown at two levels of available phosphorus. Plant and Soil 111:67−73

doi: 10.1007/BF02182038
[23]

Fist AJ, Smith FW, Edwards DG. 1987. External phosphorus requirements of five tropical grain legumes grown in flowing-solution culture. Plant and Soil 99:75−84

doi: 10.1007/BF02370155
[24]

Gramaje D, Úrbez-Torres JR, Sosnowski MR. 2018. Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Disease 102:12−39

doi: 10.1094/PDIS-04-17-0512-FE
[25]

Duan K, Yi K, Dang L, Huang H, Wu W, et al. 2008. Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. The Plant Journal 54:965−75

doi: 10.1111/j.1365-313X.2008.03460.x
[26]

Singh NRR, Roychowdhury A, Srivastava R, Akash, Gaganan GA, et al. 2023. Silencing of SlSPX1 and SlSPX2 promote growth and root mycorrhization in tomato (Solanum lycopersicum L.) seedlings. Plant Science 333:111723

doi: 10.1016/j.plantsci.2023.111723
[27]

Zhao L, Liu F, Xu W, Di C, Zhou S, et al. 2009. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnology Journal 7:550−61

doi: 10.1111/j.1467-7652.2009.00423.x
[28]

Li J, Hu L, Luan Q, Zhang J, Feng X, et al. 2024. Mining key genes associated with phosphorus deficiency through genome-wide identification and characterization of cucumber SPX family genes. BMC Plant Biology 24:699

doi: 10.1186/s12870-024-05436-3
[29]

Li Z, Ji T, Chen Q, Xu C, Liu Y, et al. 2024. Genome-wide identification and characterization of SPX domain-containing genes family in eggplant. PeerJ 12:e17341

doi: 10.7717/peerj.17341
[30]

Liu C, Chen L, Zhao R, Li R, Zhang S, et al. 2019. Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. Journal of Agricultural and Food Chemistry 67:6116−24

doi: 10.1021/acs.jafc.9b00058
[31]

Lu S, Wang P, He H, Liang G, Ma Z, et al. 2019. Bioinformatics of the grape Trihelix transcription factor family and its gene expression analysis. Horticultural Plant Journal 46:1257−69

doi: 10.16420/j.issn.0513-353x.2018-0885
[32]

Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29:e45

doi: 10.1093/nar/29.9.e45
[33]

Yao Z, Tian J, Liao H. 2014. Comparative characterization of GmSPX members reveals that GmSPX3 is involved in phosphate homeostasis in soybean. Annals of Botany 114:477−88

doi: 10.1093/aob/mcu147
[34]

Li C, You Q, Zhao P. 2021. Genome-wide identification and characterization of SPX-domain-containing protein gene family in Solanum lycopersicum. PeerJ 9:e12689

doi: 10.7717/peerj.12689
[35]

Liu TY, Huang TK, Yang SY, Hong YT, Huang SM, et al. 2016. Identification of plant vacuolar transporters mediating phosphate storage. Nature Communications 7:11095

doi: 10.1038/ncomms11095
[36]

Xu G, Guo C, Shan H, Kong H. 2012. Divergence of duplicate genes in exon-intron structure. Proceedings of the National Academy of Sciences of the United States of America 109:1187−92

doi: 10.1073/pnas.1109047109
[37]

Wang C, Ying S, Huang H, Li K, Wu P, et al. 2009. Involvement of OsSPX1 in phosphate homeostasis in rice. The Plant Journal 57:895−904

doi: 10.1111/j.1365-313X.2008.03734.x
[38]

Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, et al. 2010. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genetics 6:e1001102

doi: 10.1371/journal.pgen.1001102
[39]

Lv Q, Zhong Y, Wang Y, Wang Z, Zhang L, et al. 2014. SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. The Plant Cell 26:1586−97

doi: 10.1105/tpc.114.123208
[40]

Baek D, Kim MC, Chun HJ, Kang S, Park HC, et al. 2013. Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis. Plant Physiology 161:362−73

doi: 10.1104/pp.112.205922
[41]

Devaiah BN, Karthikeyan AS, Raghothama KG. 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology 143:1789−801

doi: 10.1104/pp.106.093971
[42]

Wang H, Xu Q, Kong YH, Chen Y, Duan JY, et al. 2014. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiology 164:2020−29

doi: 10.1104/pp.113.235077
[43]

Chen YF, Li LQ, Xu Q, Kong YH, Wang H, et al. 2009. The WRKY6 transcription factor modulates PHOSPHATE1expression in response to low pi stress in Arabidopsis. The Plant Cell 21:3554−66

doi: 10.1105/tpc.108.064980
[44]

Su T, Xu Q, Zhang FC, Chen Y, Li LQ, et al. 2015. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Physiology 167:1579−91

doi: 10.1104/pp.114.253799
[45]

Lin WY, Lin SI, Chiou TJ. 2009. Molecular regulators of phosphate homeostasis in plants. Journal of Experimental Botany 60:1427−38

doi: 10.1093/jxb/ern303
[46]

Zhong Y, Wang Y, Guo J, Zhu X, Shi J, et al. 2018. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. New Phytologist 219:135−48

doi: 10.1111/nph.15155
[47]

Shi J, Hu H, Zhang K, Zhang W, Yu Y, et al. 2014. The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice. Journal of Experimental Botany 65:859−70

doi: 10.1093/jxb/ert424
[48]

Marty F. 1999. Plant vacuoles. The Plant Cell 11:587−99

doi: 10.1105/tpc.11.4.587
[49]

Wang C, Yue W, Ying Y, Wang S, Secco D, et al. 2015. Rice SPX-major facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice. Plant Physiology 169:2822−31

doi: 10.1104/pp.15.01005
[50]

Ticconi CA, Delatorre CA, Abel S. 2001. Attenuation of phosphate starvation responses by phosphite in Arabidopsis. Plant Physiology 127:963−72

doi: 10.1104/pp.010396
[51]

Stefanovic A, Arpat AB, Bligny R, Gout E, Vidoudez C, et al. 2011. Over-expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux. The Plant Journal 66:689−99

doi: 10.1111/j.1365-313X.2011.04532.x
[52]

Hamburger D, Rezzonico E, MacDonald-Comber Petétot J, Somerville C, Poirier Y. 2002. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. The Plant Cell 14:889−902

doi: 10.1105/tpc.000745
[53]

He L, Zhao M, Wang Y, Gai J, He C. 2013. Phylogeny, structural evolution and functional diversification of the plant PHOSPHATE1 gene family: a focus on Glycine max. BMC Evolutionary Biology 13:103

doi: 10.1186/1471-2148-13-103
[54]

Zhao P, You Q, Lei M. 2019. A CRISPR/Cas9 deletion into the phosphate transporter SlPHO1;1 reveals its role in phosphate nutrition of tomato seedlings. Physiologia Plantarum 167:556−63

doi: 10.1111/ppl.12897
[55]

Secco D, Baumann A, Poirier Y. 2010. Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons. Plant Physiology 152:1693−704

doi: 10.1104/pp.109.149872
[56]

Chiou TJ. 2020. The diverse roles of rice PHO1 in phosphate transport: from root to node to grain. Plant and Cell Physiology 61:1384−86

doi: 10.1093/pcp/pcaa097
[57]

Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, et al. 2007. Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. The Plant Journal 50:982−94

doi: 10.1111/j.1365-313X.2007.03108.x
[58]

Park BS, Seo JS, Chua NH. 2014. NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis. The Plant Cell 26:454−64

doi: 10.1105/tpc.113.120311
[59]

Baek D, Chun HJ, Yun DJ, Kim MC. 2017. Cross-talk between phosphate starvation and other environmental stress signaling pathways in plants. Molecules and Cells 40:697−705

doi: 10.14348/molcells.2017.0192
[60]

Yang J, Zhao X, Chen Y, Li G, Li X, et al. 2022. Identification, structural, and expression analyses of SPX genes in giant duckweed (Spirodela polyrhiza) reveals its role in response to low phosphorus and nitrogen stresses. Cells 11:1167

doi: 10.3390/cells11071167