| [1] |
Pérez-Chaca MV, Rodríguez-Serrano M, Molina AS, Pedranzani HE, Zirulnik F, et al. 2014. Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots. Plant, Cell & Environment 37:1672−87 doi: 10.1111/pce.12280 |
| [2] |
Sanità di Toppi L, Gabbrielli R. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany 41:105−30 doi: 10.1016/S0098-8472(98)00058-6 |
| [3] |
Hall JL. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53:1−11 doi: 10.1093/jexbot/53.366.1 |
| [4] |
Singh K, Foley RC, Oñate-Sánchez L. 2002. Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology 5:430−36 doi: 10.1016/S1369-5266(02)00289-3 |
| [5] |
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, et al. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15:573−81 doi: 10.1016/j.tplants.2010.06.005 |
| [6] |
Suckow M, Schwamborn K, Kisters-Woike B, von Wilcken-Bergmann B, Müller-Hill B. 1994. Replacement of invariant bZip residues within the basic region of the yeast transcriptional activator GCN4 can change its DNA binding specificity. Nucleic Acids Research 22:4395−404 doi: 10.1093/nar/22.21.4395 |
| [7] |
Vinson CR, Sigler PB, McKnight SL. 1989. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246:911−16 doi: 10.1126/science.2683088 |
| [8] |
Yu Y, Qian Y, Jiang M, Xu J, Yang J, et al. 2020. Regulation mechanisms of plant basic leucine zippers to various abiotic stresses. Frontiers in Plant Science 11:1258 doi: 10.3389/fpls.2020.01258 |
| [9] |
Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, et al. 2002. bZIP transcription factors in Arabidopsis. Trends in Plant Science 7:106−11 doi: 10.1016/S1360-1385(01)02223-3 |
| [10] |
Izawa T, Foster R, Chua NH. 1993. Plant bZIP protein DNA binding specificity. Journal of Molecular Biology 230:1131−44 doi: 10.1006/jmbi.1993.1230 |
| [11] |
Ma H, Liu C, Li Z, Ran Q, Xie G, et al. 2018. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiology 178:753−70 doi: 10.1104/pp.18.00436 |
| [12] |
Song S, Wang G, Wu H, Fan X, Liang L, et al. 2020. OsMFT2 is involved in the regulation of ABA signaling-mediated seed germination through interacting with OsbZIP23/66/72 in rice. The Plant Journal 103:532−46 doi: 10.1111/tpj.14748 |
| [13] |
Utsugi S, Ashikawa I, Nakamura S, Shibasaka M. 2020. TaABI5, a wheat homolog of Arabidopsis thaliana ABA insensitive 5, controls seed germination. Journal of Plant Research 133:245−56 doi: 10.1007/s10265-020-01166-3 |
| [14] |
Liu C, Wu Y, Wang X. 2012. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235:1157−69 doi: 10.1007/s00425-011-1564-z |
| [15] |
Bi C, Yu Y, Dong C, Yang Y, Zhai Y, et al. 2021. The bZIP transcription factor TabZIP15 improves salt stress tolerance in wheat. Plant Biotechnology Journal 19:209−11 doi: 10.1111/pbi.13453 |
| [16] |
Li Z, Fu D, Wang X, Zeng R, Zhang X, et al. 2022. The transcription factor bZIP68 negatively regulates cold tolerance in maize. The Plant Cell 34:2833−51 doi: 10.1093/plcell/koac137 |
| [17] |
Norén Lindbäck L, Ji Y, Cervela-Cardona L, Jin X, Pedmale UV, et al. 2023. An interplay between bZIP16, bZIP68, and GBF1 regulates nuclear photosynthetic genes during photomorphogenesis in Arabidopsis. New Phytologist 240:1082−96 doi: 10.1111/nph.19219 |
| [18] |
Lu Z, Qiu W, Jin K, Yu M, Han X, et al. 2022. Identification and analysis of bZIP family genes in Sedum plumbizincicola and their potential roles in response to cadmium stress. Frontiers in Plant Science 13:859386 doi: 10.3389/fpls.2022.859386 |
| [19] |
Chai M, Fan R, Huang Y, Jiang X, Wai MH, et al. 2022. GmbZIP152, a soybean bZIP transcription factor, confers multiple biotic and abiotic stress responses in plant. International Journal of Molecular Sciences 23:10935 doi: 10.3390/ijms231810935 |
| [20] |
Hou F, Liu K, Zhang N, Zou C, Yuan G, et al. 2022. Association mapping uncovers maize ZmbZIP107 regulating root system architecture and lead absorption under lead stress. Frontiers in Plant Science 13:1015151 doi: 10.3389/fpls.2022.1015151 |
| [21] |
Wu B, Peng H, Sheng M, Luo H, Wang X, et al. 2021. Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and environmental safety 220:112368 doi: 10.1016/j.ecoenv.2021.112368 |
| [22] |
Yang W, Glover BJ, Rao GY, Yang J. 2006. Molecular evidence for multiple polyploidization and lineage recombination in the Chrysanthemum indicum polyploid complex (Asteraceae). New Phytologist 171:875−86 doi: 10.1111/j.1469-8137.2006.01779.x |
| [23] |
Liu Y, Chai M, Zhang M, He Q, Su Z, et al. 2020. Genome-wide analysis, characterization, and expression profile of the basic leucine zipper transcription factor family in pineapple. International Journal of Genomics 2020:3165958 doi: 10.1155/2020/3165958 |
| [24] |
Hou Z, Yang S, He W, Lu T, Feng X, et al. 2024. The haplotype-resolved genome of diploid Chrysanthemum indicum unveils new acacetin synthases genes and their evolutionary history. The Plant Journal 119:1336−52 doi: 10.1111/tpj.16854 |
| [25] |
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80 doi: 10.1093/molbev/mst010 |
| [26] |
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37:1530−34 doi: 10.1093/molbev/msaa015 |
| [27] |
Letunic I, Bork P. 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research 52:W78−W82 doi: 10.1093/nar/gkae268 |
| [28] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009 |
| [29] |
Zhu L, Guan Y, Liu Y, Zhang Z, Jaffar MA, et al. 2020. Regulation of flowering time in chrysanthemum by the R2R3 MYB transcription factor CmMYB2 is associated with changes in gibberellin metabolism. Horticulture Research 7:96 doi: 10.1038/s41438-020-0317-1 |
| [30] |
Gao W, Meng Q, Wang X, Chen F, Zhou Y, et al. 2023. Overexpression of CiMYC2 transcription factor from Chrysanthemum indicum var. aromaticum resulted in modifed trichome formation and terpenoid biosynthesis in transgenic tobacco. Journal of Plant Growth Regulation 42:4161−75 doi: 10.1007/s00344-022-10881-1 |
| [31] |
Uraguchi S, Ohshiro Y, Otsuka Y, Wada E, Naruse F, et al. 2022. Phytochelatin-mediated metal detoxification pathway is crucial for an organomercurial phenylmercury tolerance in Arabidopsis. Plant Molecular Biology 10:563−77 doi: 10.1007/s11103-021-01221-0 |
| [32] |
Li GZ, Zheng YX, Liu HT, Liu J, Kang GZ. 2022. WRKY74 regulates cadmium tolerance through glutathione-dependent pathway in wheat. Environmental Science and Pollution Research 29:68191−201 doi: 10.1007/s11356-022-20672-6 |
| [33] |
Arnon DI. 1949. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1−15 doi: 10.1104/pp.24.1.1 |
| [34] |
Dong Q, Tian Y, Zhang X, Duan D, Zhang H, et al. 2024. Overexpression of the transcription factor MdWRKY115 improves drought and osmotic stress tolerance by directly binding to the MdRD22 promoter in apple. Horticultural Plant Journal 10:629−40 doi: 10.1016/j.hpj.2023.05.005 |
| [35] |
Gulzar F, Fu J, Zhu C, Yan J, Li X, et al. 2021. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis. International Journal of Molecular Sciences 22:10080 doi: 10.3390/ijms221810080 |
| [36] |
Jin D, Zhang Q, Liu Y, Liang M, Li A, et al. 2022. Overexpression of the maize phytochelatin synthase gene (ZmPCS1) enhances Cd tolerance in plants. Acta Physiologiae Plantarum 44:114 doi: 10.1007/s11738-022-03451-1 |
| [37] |
Zhu S, Shi W, Jie Y. 2021. Overexpression of BnPCS1, a novel phytochelatin synthase gene from ramie (Boehmeria nivea), enhanced Cd tolerance, accumulation, and translocation in Arabidopsis thaliana. Frontiers in Plant Science 12:639189 doi: 10.3389/fpls.2021.639189 |
| [38] |
Tao YT, Chen LX, Jin J, Du ZK, Li JM. 2022. Genome-wide identification and analysis of bZIP gene family reveal their roles during development and drought stress in Wheel Wingnut (Cyclocarya paliurus). BMC Genomics 23:743 doi: 10.1186/s12864-022-08978-8 |
| [39] |
Zhang Y, Gao W, Li H, Wang Y, Li D, et al. 2020. Genome-wide analysis of the bZIP gene family in Chinese jujube (Ziziphus jujuba Mill.). BMC Genomics 21:483 doi: 10.1186/s12864-020-06890-7 |
| [40] |
Liu M, Wen Y, Sun W, Ma Z, Huang L, et al. 2019. Genome-wide identification, phylogeny, evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat. BMC Genomics 20:483 doi: 10.1186/s12864-019-5882-z |
| [41] |
Zhang M, Liu Y, Shi H, Guo M, Chai M, et al. 2018. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family. BMC Genomics 19:159 doi: 10.1186/s12864-018-4511-6 |
| [42] |
Zhao J, Guo R, Guo C, Hou H, Wang X, et al. 2016. Evolutionary and expression analyses of the apple basic leucine zipper transcription factor family. Frontiers in Plant Science 7:376 doi: 10.3389/fpls.2016.00376 |
| [43] |
Ma BT, Wu GQ, Wei M. 2024. Roles of bZIP transcription factor in the response to stresses, and growth and development in plants. Biotechnology Bulletin 40:148−60 |
| [44] |
Duan L, Mo Z, Fan Y, Li K, Yang M, et al. 2022. Genome-wide identification and expression analysis of the bZIP transcription factor family genes in response to abiotic stress in Nicotiana tabacum L. BMC Genomics 23:318 doi: 10.1186/s12864-022-08547-z |
| [45] |
Fan J, Chen N, Rao W, Ding W, Wang Y, et al. 2024. Genome-wide analysis of bZIP transcription factors and their expression patterns in response to methyl jasmonate and low-temperature stresses in Platycodon grandiflorus. PeerJ 12:e17371 doi: 10.7717/peerj.17371 |
| [46] |
Lai H, Wang M, Yan L, Feng C, Tian Y, et al. 2024. Genome-wide identification of bZIP transcription factors in Cymbidium ensifolium and analysis of their expression under low-temperature stress. Plants 13:219 doi: 10.3390/plants13020219 |
| [47] |
Monteiro CC, Rolão MB, Franco MR, Peters LP, Cia MC, et al. 2012. Biochemical and histological characterization of tomato mutants. Anais da Academia Brasileira de Ciencias 84:573−85 doi: 10.1590/S0001-37652012005000022 |
| [48] |
Komárková M, Chromý J, Pokorná E, Soudek P, Máchová P. 2020. Physiological and transcriptomic response of grey poplar (Populus × canescens Aiton Sm.) to cadmium stress. Plants 9:1485 doi: 10.3390/plants9111485 |
| [49] |
Quan M, Liu X, Xiao L, Chen P, Song F, et al. 2021. Transcriptome analysis and association mapping reveal the genetic regulatory network response to cadmium stress in Populus tomentosa. Journal of Experimental Botany 72:576−91 doi: 10.1093/jxb/eraa434 |
| [50] |
Agrawal GK, Rakwal R, Iwahashi H. 2002. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochemical and Biophysical Research Communications 294:1009−16 doi: 10.1016/S0006-291X(02)00571-5 |
| [51] |
Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. 2020. The effects of cadmium toxicity. International Journal of Environmental Research and Public Health 17:3782 doi: 10.3390/ijerph17113782 |
| [52] |
Xian J, Wang Y, Niu K, Ma H, Ma X. 2020. Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis. Chemosphere 250:126158 doi: 10.1016/j.chemosphere.2020.126158 |
| [53] |
Pan C, Lu H, Yu J, Liu J, Liu Y, et al. 2019. Identification of cadmium-responsive Kandelia obovata SOD family genes and response to Cd toxicity. Environmental and Experimental Botany 162:230−38 doi: 10.1016/j.envexpbot.2019.02.018 |