| [1] |
Randhir R, Shetty K. 2005. Developmental stimulation of total phenolics and related antioxidant activity in light- and dark-germinated corn by natural elicitors. Process Biochemistry 40(5):1721−32 doi: 10.1016/j.procbio.2004.06.064 |
| [2] |
Ma J, Du Z, Gao S, Zang J. 2024. Tea polyphenols-mediated supramolecular architectures: design and applications. Trends in Food Science & Technology 152:104665 doi: 10.1016/j.jpgs.2024.104665 |
| [3] |
El-Saadony M, Yang T, Saad A, Alkafaas SS, Elkafas SS, et al. 2024. Polyphenols: chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: a review. International Journal of Biological Macromolecules 277:134223 doi: 10.1016/j.ijbiomac.2024.134223 |
| [4] |
Li A, Li S, Zhang Y, Xu X, Chen Y, et al. 2014. Resources and biological activities of natural polyphenols. Nutrients 6(12):6020−47 doi: 10.3390/nu6126020 |
| [5] |
Lang Y, Gao N, Zang Z, Meng X, Lin Y, et al. 2024. Classification and antioxidant assays of polyphenols: a review. Journal of Future Foods 4(3):193−204 doi: 10.1016/j.jfutfo.2023.07.002 |
| [6] |
Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. 2011. Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandate Chemie Internation Edition 50(3):586−621 doi: 10.1002/anie.201000044 |
| [7] |
Manzoor Z, Sajad A, Qadiri SSN, Shah FA, Dar SA, et al. 2025. Polyphenols as antiviral agents: assessing their potential usage and benefits in aquaculture. Aquaculture International 33:106 doi: 10.1007/s10499-024-01778-9 |
| [8] |
Williamson G. 2017. The role of polyphenols in modern nutrition. Nutrition Bulletin 42(3):226−35 doi: 10.1111/nbu.12278 |
| [9] |
Grand View Research website analysis. 2023. Polyphenols market size, share & trends analysis report by product (grape seed, green tea, apple, cocoa), by application (beverages, food, feed), by region, and segment forecasts. www.grandviewresearch.com/services/market-research-reports |
| [10] |
Ji W, Chen F, Chen Z, Jiang H. 2024. Research in advances in the bioactivity of plant polyphenols. International Journal of Food Science and Technology 59:8037−44 doi: 10.1111/ijfs.17494 |
| [11] |
Hu J, Xianyu Y. 2021. When nano meets plants: a review on the interplay between nanoparticles and plants. Nano Today 38:101143 doi: 10.1016/j.nantod.2021.101143 |
| [12] |
Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M. 2016. Anticancer efficacy of polyphenols and their combinations. Nutrients 8(9):552 doi: 10.3390/nu8090552 |
| [13] |
Vestergaard M, Ingmer H. 2019. Antibacterial and antifungal properties of resveratrol. International Journal of Antimicrobial Agents 53(6):716−23 doi: 10.1016/j.ijantimicag.2019.02.015 |
| [14] |
Shen N, Wang T, Gan Q, Liu S, Wang L, et al. 2022. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry 383:132531 doi: 10.1016/j.foodchem.2022.132531 |
| [15] |
Wang L, Li T, Wu C, Fan G, Zhou D, et al. 2025. Unlocking the potential of plant polyphenols: advances in extraction, antibacterial mechanisms, and future applications. Food Science and Biotechnology 34:1235−59 doi: 10.1007/s10068-024-01727-5 |
| [16] |
Reyes-Farias M, Carrasco-Pozo C. 2019. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. International Journal of Molecular Sciences 20(13):3177 doi: 10.3390/ijms20133177 |
| [17] |
Wang H, Wang C, Zou Y, Hu J, Li Y, et al. 2020. Natural polyphenols in drug delivery systems: current status and future challenges. Giant 3:100022 doi: 10.1016/j.giant.2020.100022 |
| [18] |
Xu LQ, Neoh KG, Kang ET. 2018. Natural polyphenols as versatile platforms for material engineering and surface functionalization. Progress in Polymer Science 87:165−96 doi: 10.1016/j.progpolymsci.2018.08.005 |
| [19] |
Li Y, Miao Y, Yang L, Zhao Y, Wu K, et al. 2022. Recent advances in the development and antimicrobial applications of metal-phenolic networks. Advaced Science 9:2202684 doi: 10.1002/advs.202202684 |
| [20] |
Yu R, Chen H, He J, Zhang Z, Zhou J, et al. 2024. Engineering antimicrobial metal-phenolic network nanoparticles with high biocompatibility for wound healing. Advanced Materials 36(6):2307680 doi: 10.1002/adma.202307680 |
| [21] |
Kim KK, Ki MR, Min KH, Pack SP. 2023. Advanced delivery system of polyphenols for effective cancer prevention and therapy. Antioxidants 12(5):1048 doi: 10.3390/antiox12051048 |
| [22] |
Chen C, Yang H, Yang X, Ma Q. 2022. Tannic acid: a crosslinker leading to versatile functional polymeric networks: a review. RSC Advances 12(13):7689−711 doi: 10.1039/D1RA07657D |
| [23] |
Xu C, Zhou S, Song H, Hu H, Zhang X, et al. 2023. Green tea polyphenols-derived hybrid materials in manufacturing, environment, food and healthcare. Nano Today 52:101990 doi: 10.1016/j.nantod.2023.101990 |
| [24] |
Pals MJ, Wijnberg L, Yildiz C, Velema WA. 2024. Catechol-siderophore mimics convey nucleic acid therapeutics into bacteria. Angewandte Chemie Internation Edition 63(19):e202402405 doi: 10.1002/anie.202402405 |
| [25] |
Bu Q, Jiang D, Yu Y, Deng Y, Chen T, et al. 2024. Surface chemistry engineered selenium nanoparticles as bactericidal and immuno-modulating dual-functional agents for combating methicillin-resistant Staphylococcus aureus infection. Drug Resistance Updates 76:101102 doi: 10.1016/j.drup.2024.101102 |
| [26] |
Dini I, Grumetto L. 2022. Recent advances in natural polyphenol research. Molecules 27(24):8777 doi: 10.3390/molecules27248777 |
| [27] |
Wang R, Zhang Y, Jia Y, Zhang M, Huang Y, et al. 2021. Persimmon oligomeric proanthocyanidins exert antibacterial activity through damaging the cell membrane and disrupting the energy metabolism of Staphylococcus aureus. ACS Food Science & Technology 1(1):35−44 doi: 10.1021/acsfoodscitech.0c00021 |
| [28] |
Lee JH, Regmi SC, Kim JA, Cho MH, Yun H, et al. 2011. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infection and Immunity 79(12):4819−27 doi: 10.1128/iai.05580-11 |
| [29] |
Borozan A, Popescu S, Madosa E, Ciulca A, Moldovan C, et al. 2023. Comparative study on the antimicrobial activity of propolis, catechin, quercetin and gallic acid. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 51(2):12826 doi: 10.15835/nbha51212826 |
| [30] |
Chiriac ER, Chiţescu CL, Geană EI, Gird CE, Socoteanu RP, et al. 2021. Advanced analytical approaches for the analysis of polyphenols in plants matrices—a review. Separations 8(5):65 doi: 10.3390/separations8050065 |
| [31] |
Hu Q, Zhang W, Wei F, Huang M, Shu M, et al. 2024. Human diet-derived polyphenolic compounds and hepatic diseases: from therapeutic mechanisms to clinical utilization. Phytotherapy Research 38(1):280−304 doi: 10.1002/ptr.8043 |
| [32] |
Cladis DP, Weaver CM, Ferruzzi MG. 2022. (Poly)phenol toxicity in vivo following oral administration: a targeted narrative review of (poly)phenols from green tea, grape, and anthocyanin-rich extracts. Phytotherapy Research 36(1):323−35 doi: 10.1002/ptr.7323 |
| [33] |
Nishimuta H, Tsujimoto M, Ogura K, Hiratsuka A, Ohtani H, et al. 2005. Inhibitory effects of various beverages on ritodrine sulfation by recombinant human sulfotransferase isoforms SULT1A1 and SULT1A3. Pharmaceutical Research 22:1406−10 doi: 10.1007/s11095-005-5263-y |
| [34] |
Yang P, Huang Q, Zhang J, Li Y, Gao H, et al. 2024. Natural polyphenolic nanodots for alzheimer's disease treatment. Advanced Materials 36(3):2308393 doi: 10.1002/adma.202308393 |
| [35] |
Lin R, Li G, He Q, Song J, Ma Y, et al. 2024. Synthesis of mesoporous catechin nanoparticles as biocompatible drug-free antibacterial mesoformulation. Journal of the American Chemical Society 164(39):26983−93 doi: 10.1021/jacs.4c08336 |
| [36] |
Fu S, Yi X, Li Y, Li Y, Qu X, et al. 2024. Berberine and chlorogenic acid-assembled nanoparticles for highly efficient inhibition of multidrug-resistant Staphylococcus aureus. Journal of Hazardous Materials 473(15):134680 doi: 10.1016/j.jhazmat.2024.134680 |
| [37] |
Zhang B, Wang C, Guo M, Zhu F, Yu Z. et al. 2024. Circadian rhythm-dependent therapy by composite targeted polyphenol nanoparticles for myocardial ischemia-reperfusion injury. ACS Nano 18(41):28154−69 doi: 10.1021/acsnano.4c07690 |
| [38] |
Hu Y, Miao Y, Zhang Y, Wang X, Liu X, et al. 2024. Co-assembled binary polyphenol natural products for the prevention and treatment of radiation-induced skin injury. ACS Nano 18(40):27557−69 doi: 10.1021/acsnano.4c08508 |
| [39] |
Miao Y, Wang X, Zhao X, Hu Y, Liu X, et al. 2025. Co-assembly strategies of natural plant compounds for improving their bioavailability. Food & Medicine Homology 2(2):9420022 doi: 10.26599/FMH.2025.9420022 |
| [40] |
Liu T, Ma M, Ali A, Liu Q, Bai R, et al. 2024. Self-assembled copper tannic acid nanoparticles: a powerful nano-bactericide by valence shift of copper. Nano Today 54:102071 doi: 10.1016/j.nantod.2023.102071 |
| [41] |
Chen H, Tang C. 2024. Metal polyphenol network-modified chitin nanocrystals reinforce versatile biomass films: active packaging, intelligent visualization and controlled photothermal sterilization. Chemical Engineering Journal 500(15):157114 doi: 10.1016/j.cej.2024.157114 |
| [42] |
Huo J, Jia Q, Wang K, Chen J, Zhang J, et al. 2023. Metal-phenolic networks assembled on TiO2 nanospikes for antimicrobial peptide deposition and osteoconductivity enhancement in orthopedic applications. Langmuir 39(3):1238−49 doi: 10.1021/acs.langmuir.2c03028 |
| [43] |
Ye Y, Zheng Q, Wang Z, Wang S, Lu Z, et al. 2024. Metal-phenolic nanoparticles enhance low temperature photothermal therapy for bacterial biofilm in superficial infections. Journal of Nanobiotechnology 22:713 doi: 10.1186/s12951-024-02985-5 |
| [44] |
Wang M, Yang X, Huang T, Wang M, He Y, et al. 2023. Cell-targeted metal-phenolic nanoalgaecide in hydroponic cultivation to enhance food sustainability. ACS Nano 17(24):25136−46 doi: 10.1021/acsnano.3c08077 |
| [45] |
Du Y, Huo Y, Yang Q, Han Z, Hou L, et al. 2023. Ultrasmall iron-gallic acid coordination polymer nanodots with antioxidative neuroprotection for PET/MR imaging-guided ischemia stroke therapy. Exploration 3(1):20220041 doi: 10.1002/EXP.20220041 |
| [46] |
Fu W, Huang Z, Li W, Xu L, Yang M, et al. 2025. Copper-luteolin nanocomplexes for mediating multifaceted regulation of oxidative stress, intestinal barrier, and gut microbiota in inflammatory bowel disease. Bioactive Materials 46:118−33 doi: 10.1016/j.bioactmat.2024.12.004 |
| [47] |
Zhao X, Wang J, Deng Y, Liao L, Zhou M, et al. 2021. Quercetin as a protective agent for liver diseases: a comprehensive descriptive review of the molecular mechanism. Phytotherapy Research 35(9):4727−47 doi: 10.1002/ptr.7104 |
| [48] |
Feng Y, Zhang X, Li J, Fu S, Xu W, et al. 2025. Ultra-small quercetin-based nanotherapeutics ameliorate acute liver failure by combatting inflammation/cellular senescence cycle. Theranostics 15(3):1035−56 doi: 10.7150/thno.103746 |
| [49] |
Maiti S, Maji B, Yadav H. 2024. Progress on green crosslinking of polysaccharide hydrogels for drug delivery and tissue engineering applications. Carbohydrate Polymers 326(15):121584 doi: 10.1016/j.carbpol.2023.121584 |
| [50] |
Zhang Z, Zhang Y, Liu Y, Zheng P, Gao T, et al. 2023. Water-retaining and separable adhesive hydrogel dressing for wound healing without secondary damage. Science China Materials 66:3337−46 doi: 10.1007/s40843-022-2466-7 |
| [51] |
Feng Y, Zhang Z, Tang W, Dai Y. 2023. Gel/hydrogel-based in situ biomaterial platforms for cancer postoperative treatment and recovery. Exploration 3(5):20220173 doi: 10.1002/EXP.20220173 |
| [52] |
Sun Z, Ou Q, Dong C, Zhou J, Hu H, et al. 2024. Conducting polymer hydrogels based on supramolecular strategies for wearable sensors. Exploration 4(5):20220167 doi: 10.1002/EXP.20220167 |
| [53] |
Zhu T, Ni Y, Biesold GM, Cheng Y, Ge M, et al. 2023. Recent advances in conductive hydrogels: classifications, properties, and applications. Chemical Society Reviews 52:473−509 doi: 10.1039/D2CS00173J |
| [54] |
Cui J, Xu R, Dong W, Kaneko T, Chen M, et al. 2023. Skin-inspired patterned hydrogel with strain-stiffening capability for strain sensors. ACS Applied Materials Interfaces 15(41):48736−43 doi: 10.1021/acsami.3c12127 |
| [55] |
Xing Q, Zhen L, Zhou X, Zhong S, Li F, et al. 2025. Cohesion regulation of polyphenol cross-linked hydrogel adhesives: from intrinsic cross-link to designs of temporal responsiveness. Advanced Functional Materials 35(4):2414294 doi: 10.1002/adfm.202414294 |
| [56] |
Lian C, Liu J, Wei W, Wu X, Goto T, et al. 2024. Mg-gallate metal-organic framework-based sprayable hydrogel for continuously regulating oxidative stress microenvironment and promoting neurovascular network reconstruction in diabetic wounds. Bioactive Materials 38:181−94 doi: 10.1016/j.bioactmat.2024.04.028 |
| [57] |
Ren H, Zhang Z, Cheng X, Zou Z, Chen X, et al. 2023. Injectable, self-healing hydrogel adhesives with firm tissue adhesion and on-demand biodegradation for sutureless wound closure. Science Advances 9(33):adh4327 doi: 10.1126/sciadv.adh4327 |
| [58] |
Zhong Y, Seidi F, Wang Y, Zheng L, Jin Y, et al. 2022. Injectable chitosan hydrogels tailored with antibacterial and antioxidant dual functions for regenerative wound healing. Carbohydrate Polymers 298(15):120103 doi: 10.1016/j.carbpol.2022.120103 |
| [59] |
Wang T, Ding J, Liang S, Lin Z, Yang J, et al. 2024. An adhesive immune-stimulating multifunctional hydrogel for potent tumor chemoimmunotherapy and postoperative wound healing promotion. Advanced Functional Materials 34(14):2312360 doi: 10.1002/adfm.202312360 |
| [60] |
Liu H, Li Q, Xu Y, Sun Y, Fan X, et al. 2023. Dual-light defined in situ oral mucosal lesion therapy through a mode switchable anti-bacterial and anti-inflammatory mucoadhesive hydrogel. Biomaterials Science 2(11):3180−96 doi: 10.1039/D2BM01721K |
| [61] |
Nie J, Pei B, Wang Z, Hu Q. 2019. Construction of ordered structure in polysaccharide hydrogel: a review. Carbohydrate Polymers 205:225−35 doi: 10.1016/j.carbpol.2018.10.033 |
| [62] |
Guyot C, Adoungotchodo A, Taillades W, Cerruti M, Lerouge S. 2021. A catechol-chitosan-based adhesive and injectable hydrogel resistant to oxidation and compatible with cell therapy. Journal of Materials Chemistry B 9(40):8406−16 doi: 10.1039/D1TB00807B |
| [63] |
Zhao X, Pei D, Yang Y, Xu K, Yu J, et al. 2021. Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment. Advanced Functional Materials 31(18):2009442 doi: 10.1002/adfm.202009442 |
| [64] |
Wen M, Wang T, Li N, Wu Y, Zhang L, et al. 2024. Polyphenol-copper derived self-cascade nanozyme hydrogel in boosting oxygenation and robust revascularization for tissue regeneration. Advanced Functional Materials 34(40):2403634 doi: 10.1002/adfm.202403634 |
| [65] |
Zhang C, Liao P, Liang R, Zheng X, Jian J. 2019. Epigallocatechin gallate prevents mitochondrial impairment and cell apoptosis by regulating miR-30a/p53 axis. Phytomedicine 61:152845 doi: 10.1016/j.phymed.2019.152845 |
| [66] |
Hsieh SR, Hsu CS, Lu CH, Chen WC, Chiu CH, et al. 2013. Epigallocatechin-3-gallate-mediated cardioprotection by Akt/GSK-3β/caveolin signalling in H9c2 rat cardiomyoblasts. Journal of Biomedical Science 20(1):86 doi: 10.1186/1423-0127-20-86 |
| [67] |
Wan H, Yang X, Zhang Y, Liu X, Li Y, et al. 2024. Polyphenol-reinforced glycocalyx-like hydrogel coating induced myocardial regeneration and immunomodulation. ACS Nano 18(32):21512−22 doi: 10.1021/acsnano.4c06332 |
| [68] |
Li Z, Li Q, Cao W, Zhan J, He Y, et al. 2024. A strongly robust chitosan-based programmed control functional hydrogel improved mitochondrial function and pro-vascularization for adaptive repair of myocardial infarction. Advanced Functional Materials 34(16):2312631 doi: 10.1002/adfm.202312631 |
| [69] |
Manna S, Seth A, Gupta P, Nandi G, Dutta R, et al. 2023. Chitosan derivatives as carriers for drug delivery and biomedical applications. ACS Biomaterials Science & Engineering 9(5):2181−202 doi: 10.1021/acsbiomaterials.2c01297 |
| [70] |
Riccucci G, Ferraris S, Reggio C, Bosso A, Örlygsson G, et al. 2021. Polyphenols from grape pomace: functionalization of chitosan-coated hydroxyapatite for modulated swelling and release of polyphenols. Langmuir 37(51):14793−804 doi: 10.1021/acs.langmuir.1c01930 |
| [71] |
Huang B, Hu Q, Zhang G, Zou J, Fei P, et al. 2024. Exploring the emulsification potential of chitosan modified with phenolic acids: emulsifying properties, functional activities, and application in curcumin encapsulation. International Journal of Biological Macromolecules 263:130450 doi: 10.1016/j.ijbiomac.2024.130450 |
| [72] |
Meng W, Sun H, Mu TH, Garcia-Vaquero M. 2024. Exploring pickering emulsions stabilized by chitosan and multiple seaweed polyphenols for an efficient protection and delivery of β-carotene. ACS Food Science & Technology 4(5):1287−300 doi: 10.1021/acsfoodscitech.4c00178 |
| [73] |
Cheng X, Zou Q, Zhang H, Zhu J, Hasan M, et al. 2023. Effects of a chitosan nanoparticles encapsulation on the properties of litchi polyphenols. Food Science and Biotechnology 32:1861−71 doi: 10.1007/s10068-023-01303-3 |
| [74] |
Kim BS, Kim SH, Kim K, An YH, So KH, et al. 2020. Enzyme-mediated one-pot synthesis of hydrogel with the polyphenol cross-linker for skin regeneration. Materials Today Bio 8:100079 doi: 10.1016/j.mtbio.2020.100079 |
| [75] |
Guo S, Ren Y, Chang R, He Y, Zhang D, et al. 2022. Injectable self-healing adhesive chitosan hydrogel with antioxidative, antibacterial, and hemostatic activities for aapid hemostasis and skin wound healing. ACS Applied Materials & Interfaces 14(30):34455−69 doi: 10.1021/acsami.2c08870 |
| [76] |
Kerch G. 2015. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: a review. Trends in Food Science & Technology 46(2):159−66 doi: 10.1016/j.jpgs.2015.10.010 |
| [77] |
Ma M, Gu M, Zhang S, Yuan Y. 2024. Effect of tea polyphenols on chitosan packaging for food preservation: physicochemical properties, bioactivity, and nutrition. International Journal of Biological Macromolecules 259:129267 doi: 10.1016/j.ijbiomac.2024.129267 |
| [78] |
Xu M, Fang D, Kimatu BM, Lyu L, Wu W, et al. 2024. Recent advances in anthocyanin-based films and its application in sustainable intelligent food packaging: a review. Food Control 162:110431 doi: 10.1016/j.foodcont.2024.110431 |
| [79] |
Sheng W, Yang L, Yang Y, Wang C, Jiang G, et al. 2025. Photo-responsive Cu-tannic acid nanoparticle-mediated antibacterial film for efficient preservation of strawberries. Food Chemistry 464:141711 doi: 10.1016/j.foodchem.2024.141711 |
| [80] |
Qin Y, Liu Y, Yuan L, Yong H, Liu J. 2019. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids 96:102−11 doi: 10.1016/j.foodhyd.2019.05.017 |
| [81] |
Zhao W, Liang X, Wang X, Wang S, Wang L, et al. 2022. Chitosan based film reinforced with EGCG loaded melanin-like nanocomposite (EGCG@MNPs) for active food packaging. Carbohydrate Polymers 290:119471 doi: 10.1016/j.carbpol.2022.119471 |
| [82] |
Li Q, Dong Z, Chen M, Feng L. 2021. Phenolic molecules constructed nanomedicine for innovative cancer treatment. Coordination Chemistry Reviews 439:213912 doi: 10.1016/j.ccr.2021.213912 |
| [83] |
Picchio ML, Orellano MS, Motta MA, Huck-Iriart C, Sánchez-deAlcázar D, et al. 2024. Elastomeric protein bioactive eutectogels for topical drug delivery. Advanced Functional Materials 34(18):2313747 doi: 10.1002/adfm.202313747 |
| [84] |
de Lacalle JL, Gallastegui A, Olmedo-Martínez JL, Moya M, Lopez-Larrea N, et al. 2023. Multifunctional ionic polymers from deep eutectic monomers based on polyphenols. ACS Macro Letters 12(2):125−32 doi: 10.1021/acsmacrolett.2c00657 |
| [85] |
Zhu G, Zhang J, Huang J, Yu X, Cheng J, et al. 2022. Self-healing, antibacterial, and 3D-printable polymerizable deep eutectic solvents derived from tannic acid. ACS Sustainable Chemistry & Engineering 10:7954−64 doi: 10.1021/acssuschemeng.2c01328 |
| [86] |
Jia Q, Yue Z, Li Y, Zhang Y, Zhang J, et al. 2024. Bioinspired cytomembrane coating besieges tumor for blocking metabolite transportation. Science Bulletin 69(17):933−48 doi: 10.1016/j.scib.2024.01.040 |
| [87] |
Yi Z, Ma X, Tong Q, Ma L, Tan Y, et al. 2025. A library of polyphenol-amino acid condensates for high-throughput continuous flow production of nanomedicines with ultra-high drug loading. Advanced Materials 00:e2417534 doi: 10.1002/adma.202417534 |
| [88] |
Yu Q, Zhou J, Song J, Zhou H, Kang B, et al. 2023. A cascade nanoreactor of metal-protein-polyphenol capsule for oxygen-mediated synergistic tumor starvation and chemodynamic therapy. Small 19(5):e2206592 doi: 10.1002/smll.202206592 |
| [89] |
Ni W, Zhou G, Chen Y, Li X, Yan T, et al. 2024. Fabrication of antibacterial poly (L-lactic acid)/tea polyphenol blend films via reactive blending using SG copolymer. International Journal of Biological Macromolecules 262(2):130130 doi: 10.1016/j.ijbiomac.2024.130130 |
| [90] |
Bae KH, Chan KH, Kurisawa M. 2022. Autoxidation-resistant, ROS-scavenging, and anti-inflammatory micellar nanoparticles self-assembled from poly(acrylic acid)-green tea catechin conjugates. ACS Macro Letters 11(7):835−40 doi: 10.1021/acsmacrolett.2c00239 |
| [91] |
Dai D, Wang J, Xie H, Zhang C. 2023. An epigallocatechin gallate-amorphous calcium phosphate nanocomposite for caries prevention and demineralized enamel restoration. Materials Today Bio 21:100715 doi: 10.1016/j.mtbio.2023.100715 |