[1]

Marsh AJ, O'Sullivan O, Hill C, Ross RP, Cotter PD. 2014. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology 38:171−78

doi: 10.1016/j.fm.2013.09.003
[2]

de Melo LM, Soares MG, Bevilaqua GC, Schmidt VCR, de Lima M. 2024. Historical overview and current perspectives on kombucha and SCOBY: a literature review and bibliometrics. Food Bioscience 59:104081

doi: 10.1016/j.fbio.2024.104081
[3]

Blanc PJ. 1996. Characterization of the tea fungus metabolites. Biotechnology Letters 18:139−42

doi: 10.1007/BF00128667
[4]

Bhattacharya S, Gachhui R, Sil PC. 2013. Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food and Chemical Toxicology 60:328−40

doi: 10.1016/j.fct.2013.07.051
[5]

Gamboa-Gómez CI, González-Laredo RF, Gallegos-Infante JA, del Mar Larrosa Pérez M, Moreno-Jiménez MR, et al. 2016. Antioxidant and angiotensin-converting enzyme inhibitory activity of Eucalyptus camaldulensis and Litsea glaucescens infusions fermented with kombucha consortium. Food Technology and Biotechnology 54:367−74

doi: 10.17113/ftb.54.03.16.4622
[6]

Murugesan GS, Sathishkumar M, Jayabalan R, Binupriya AR, Swaminathan K, et al. 2009. Hepatoprotective and curative properties of Kombucha tea against carbon tetrachloride-induced toxicity. Journal of Microbiology and Biotechnology 19:397−402

[7]

de Campos Costa MA, de Souza Vilela DL, Fraiz GM, Lopes IL, Coelho AIM, et al. 2023. Effect of kombucha intake on the gut microbiota and obesity-related comorbidities: a systematic review. Critical Reviews in Food Science and Nutrition 63:3851−66

doi: 10.1080/10408398.2021.1995321
[8]

Zheng Y, Liu Y, Han S, He Y, Liu R, et al. 2024. Comprehensive evaluation of quality and bioactivity of kombucha from six major tea types in China. International Journal of Gastronomy and Food Science 36:100910

doi: 10.1016/j.ijgfs.2024.100910
[9]

Zou C, Li RY, Chen JX, Wang F, Gao Y, et al. 2021. Zijuan tea- based kombucha: physicochemical, sensorial, and antioxidant profile. Food Chemistry 363:130322

doi: 10.1016/j.foodchem.2021.130322
[10]

Jakubczyk K, Kałduńska J, Kochman J, Janda K. 2020. Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants 9:447

doi: 10.3390/antiox9050447
[11]

Gramza-Michałowska A, Kulczyński B, Yuan X, Gumienna M. 2016. Research on the effect of culture time on the kombucha tea beverage's antiradical capacity and sensory value. Acta Scientiarum Polonorum Technologia Alimentaria 15:447−57

doi: 10.17306/J.AFS.2016.4.43
[12]

Cardoso RR, Neto RO, dos Santos D'Almeida CT, do Nascimento TP, Pressete CG, et al. 2020. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International 128:108782

doi: 10.1016/j.foodres.2019.108782
[13]

Sievers M, Lanini C, Weber A, Schuler-Schmid U, Teuber M. 1995. Microbiology and fermentation balance in a kombucha beverage obtained from a tea fungus fermentation. Systematic and Applied Microbiology 18:590−94

doi: 10.1016/S0723-2020(11)80420-0
[14]

Liu CH, Hsu WH, Lee FL, Liao CC. 1996. The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiology 13:407−15

doi: 10.1006/fmic.1996.0047
[15]

Jayabalan R, Malbaša RV, Lončar ES, Vitas JS, Sathishkumar M. 2014. A review on kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety 13:538−50

doi: 10.1111/1541-4337.12073
[16]

Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D, et al. 2016. Kombucha tea fermentation: microbial and biochemical dynamics. International Journal of Food Microbiology 220:63−72

doi: 10.1016/j.ijfoodmicro.2015.12.015
[17]

Teoh AL, Heard G, Cox J. 2004. Yeast ecology of Kombucha fermentation. International Journal of Food Microbiology 95:119−26

doi: 10.1016/j.ijfoodmicro.2003.12.020
[18]

Qiu W. 2019. Research advances on microbial diversity and its analytical methods of kombucha. Science and Technology of Food Industry 40:311−17

doi: 10.13386/j.issn1002-0306.2019.24.052
[19]

Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P. 2018. Understanding kombucha tea fermentation: a review. Journal of Food Science 83:580−88

doi: 10.1111/1750-3841.14068
[20]

Jayabalan R, Marimuthu S, Swaminathan K. 2007. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry 102:392−98

doi: 10.1016/j.foodchem.2006.05.032
[21]

Kallel L, Desseaux V, Hamdi M, Stocker P, Ajandouz EH. 2012. Insights into the fermentation biochemistry of Kombucha teas and potential impacts of Kombucha drinking on starch digestion. Food Research International 49:226−32

doi: 10.1016/j.foodres.2012.08.018
[22]

Dartora B, Hickert LR, Fabricio MF, Ayub MAZ, Furlan JM, et al. 2023. Understanding the effect of fermentation time on physicochemical characteristics, sensory attributes, and volatile compounds in green tea kombucha. Food Research International 174:113569

doi: 10.1016/j.foodres.2023.113569
[23]

Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. 2025. KEGG: biological systems database as a model of the real world. Nucleic Acids Research 53:D672−D677

doi: 10.1093/nar/gkae909
[24]

Fabricio MF, Mann MB, Kothe CI, Frazzon J, Tischer B, et al. 2022. Effect of freeze-dried kombucha culture on microbial composition and assessment of metabolic dynamics during fermentation. Food Microbiology 101:103889

doi: 10.1016/j.fm.2021.103889
[25]

Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, et al. 2012. Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. Annals of Microbiology 62:849−59

doi: 10.1007/s13213-011-0288-4
[26]

Yamada Y, Yukphan P, Lan Vu HTL, Muramatsu Y, Ochaikul D, et al. 2012. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiology 58:397−404

doi: 10.2323/jgam.58.397
[27]

Song Z, Hu Y, Chen X, Li G, Zhong Q, et al. 2021. Correlation between bacterial community succession and propionic acid during gray sufu fermentation. Food Chemistry 353:129447

doi: 10.1016/j.foodchem.2021.129447
[28]

Gopal J, Muthu M, Paul D, Kim DH, Chun S. 2016. Bactericidal activity of green tea extracts: the importance of catechin containing nano particles. Scientific Reports 6:19710

doi: 10.1038/srep19710
[29]

Kaashyap M, Cohen M, Mantri N. 2021. Microbial diversity and characteristics of kombucha as revealed by metagenomic and physicochemical analysis. Nutrients 13:4446

doi: 10.3390/nu13124446
[30]

Wang J, Chio C, Chen X, Su E, Cao F, et al. 2019. Efficient saccharification of Agave biomass using Aspergillus niger produced low-cost enzyme cocktail with hyperactive pectinase activity. Bioresource Technology 272:26−33

doi: 10.1016/j.biortech.2018.09.069
[31]

Narra M, Rudakiya DM, Macwan K, Patel N. 2020. Black liquor: a potential moistening agent for production of cost-effective hydrolytic enzymes by a newly isolated cellulo-xylano fungal strain Aspergillus tubingensis and its role in higher saccharification efficiency. Bioresource Technology 306:123149

doi: 10.1016/j.biortech.2020.123149
[32]

Kumar A, Toghyani M, Kheravii SK, Pineda L, Han Y, et al. 2022. Organic acid blends improve intestinal integrity, modulate short-chain fatty acids profiles and alter microbiota of broilers under necrotic enteritis challenge. Animal Nutrition 8:82−90

doi: 10.1016/j.aninu.2021.04.003
[33]

Greenwalt CJ, Steinkraus KH, Ledford RA. 2000. Kombucha, the fermented tea: microbiology, composition, and claimed health effects. Journal of Food Protection 63:976−81

doi: 10.4315/0362-028X-63.7.976
[34]

Claudine M, Augustin S, Christine M, Christian R, Liliana J. 2004. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition 79:727−47

doi: 10.1093/ajcn/79.5.727
[35]

Smith A. 2002. Effects of caffeine on human behavior. Food and Chemical Toxicology 40:1243−55

doi: 10.1016/S0278-6915(02)00096-0
[36]

Brunyé TT, Mahoney CR, Lieberman HR, Taylor HA. 2010. Caffeine modulates attention network function. Brain and Cognition 72:181−88

doi: 10.1016/j.bandc.2009.07.013
[37]

De Felice M, Renard J, Hudson R, Szkudlarek HJ, Pereira BJ, et al. 2021. L-theanine prevents long-term affective and cognitive side effects of adolescent Δ-9-tetrahydrocannabinol exposure and blocks associated molecular and neuronal abnormalities in the mesocorticolimbic circuitry. Journal of Neuroscience 41:739−50

doi: 10.1523/JNEUROSCI.1050-20.2020
[38]

Yoto A, Motoki M, Murao S, Yokogoshi H. 2012. Effects of L-theanine or caffeine intake on changes in blood pressure under physical and psychological stresses. Journal of Physiological Anthropology 31:28

doi: 10.1186/1880-6805-31-28
[39]

Liu A, Lin L, Xu W, Gong Z, Liu Z, et al. 2021. L-Theanine regulates glutamine metabolism and immune function by binding to cannabinoid receptor 1. Food & Function 12:5755−69

doi: 10.1039/d1fo00505g