[1]

Shan H, Cheng J, Zhang R, Yao X, Kong H. 2019. Developmental mechanisms involved in the diversification of flowers. Nature Plants 5:917−23

doi: 10.1038/s41477-019-0498-5
[2]

Hileman LC. 2014. Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philosophical Transactions of the Royal Society B: Biological Sciences 369:20130348

doi: 10.1098/rstb.2013.0348
[3]

Spencer V, Kim M. 2018. Re"CYC"ling molecular regulators in the evolution and development of flower symmetry. Seminars in Cell & Developmental Biology 79:16−26

doi: 10.1016/j.semcdb.2017.08.052
[4]

Viola IL, Gonzalez DH. 2023. TCP transcription factors in plant reproductive development: juggling multiple roles. Biomolecules 13:750

doi: 10.3390/biom13050750
[5]

Cubas P, Lauter N, Doebley J, Coen E. 1999. The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal 18:215−22

doi: 10.1046/j.1365-313X.1999.00444.x
[6]

Navaud O, Dabos P, Carnus E, Tremousaygue D, Herve C. 2007. TCP transcription factors predate the emergence of land plants. Journal of Molecular Evolution 65:23−33

doi: 10.1007/s00239-006-0174-z
[7]

Kölsch A, Gleissberg S. 2006. Diversification of CYCLOIDEA-like TCP genes in the basal eudicot families Fumariaceae and Papaveraceae s.str. Plant Biology 8:680−87

doi: 10.1055/s-2006-924286
[8]

Horn S, Pabón-Mora N, Theuß VS, Busch A, Zachgo S. 2015. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids. The Plant Journal 81:559−71

doi: 10.1111/tpj.12750
[9]

Howarth DG, Donoghue MJ. 2006. Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots. Proceedings of the National Academy of Sciences of the United States of America 103:9101−06

doi: 10.1073/pnas.0602827103
[10]

Wang JL, Wang HW, Cao YN, Kan SL, Liu YY. 2022. Comprehensive evolutionary analysis of the TCP gene family: further insights for its origin, expansion, and diversification. Frontiers in Plant Science 13:994567

doi: 10.3389/fpls.2022.994567
[11]

Zhang J. 2003. Evolution by gene duplication: an update. Trends in Ecology & Evolution 18:292−98

doi: 10.1016/S0169-5347(03)00033-8
[12]

Martín-Trillo M, Cubas P. 2010. TCP genes: a family snapshot ten years later. Trends in Plant Science 15:31−39

doi: 10.1016/j.tplants.2009.11.003
[13]

Nicolas M, Cubas P. 2016. The role of TCP transcription factors in shaping flower structure, leaf morphology, and plant architecture. In Plant Transcription Factors, ed. Gonzalez DH. US: Academic Press. pp. 249–267. doi: 10.1016/B978-0-12-800854-6.00016-6

[14]

Reyes E, Sauquet H, Nadot S. 2016. Perianth symmetry changed at least 199 times in angiosperm evolution. Taxon 65:945−64

doi: 10.12705/655.1
[15]

Fenster CB, Armbruster WS, Dudash MR. 2009. Specialization of flowers: is floral orientation an overlooked first step. New Phytologist 183:502−6

doi: 10.1111/j.1469-8137.2009.02852.x
[16]

Gustafsson Å. 1979. Linnaeus' Peloria: the history of a monster. Theoretical and Applied Genetics 54:241−48

doi: 10.1007/BF00281206
[17]

Luo D, Carpenter R, Vincent C, Copsey L, Coen E. 1996. Origin of floral asymmetry in Antirrhinum. Nature 383:794−99

doi: 10.1038/383794a0
[18]

Cubas P, Vincent C, Coen E. 1999. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157−61

doi: 10.1038/43657
[19]

Luo D, Carpenter R, Copsey L, Vincent C, Clark J, et al. 1999. Control of organ asymmetry in flowers of Antirrhinum. Cell 99:367−76

doi: 10.1016/S0092-8674(00)81523-8
[20]

Cubas P, Coen E, Zapater JMM. 2001. Ancient asymmetries in the evolution of flowers. Current Biology 11:1050−52

doi: 10.1016/S0960-9822(01)00295-0
[21]

Busch A, Zachgo S. 2007. Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proceedings of the National Academy of Sciences of the United States of America 104:16714−19

doi: 10.1073/pnas.0705338104
[22]

Gaudin V, Lunness PA, Fobert PR, Towers M, Riou-Khamlichi C, et al. 2000. The expression of D-cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated by the Cycloidea gene. Plant Physiology 122:1137−48

doi: 10.1104/pp.122.4.1137
[23]

Zhang P, Wang Y, Wang Z, Di S, Zhang X, et al. 2024. Chrysanthemum lavandulifolium homolog CYCLIN A2;1 modulates cell division in ray florets. Journal of Experimental Botany 75:6423−40

doi: 10.1093/jxb/erae325
[24]

Yang X, Pang HB, Liu BL, Qiu ZJ, Gao Q, et al. 2012. Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy. The Plant Cell 24:1834−47

doi: 10.1105/tpc.112.099457
[25]

Yang X, Wang Y, Liu TX, Liu Q, Liu J, et al. 2023. CYCLOIDEA-like genes control floral symmetry, floral orientation, and nectar guide patterning. The Plant Cell 35:2799−820

doi: 10.1093/plcell/koad115
[26]

Feng X, Zhao Z, Tian Z, Xu S, Luo Y, et al. 2006. Control of petal shape and floral zygomorphy in Lotus japonicus. Proceedings of the National Academy of Sciences of the United States of America 103:4970−75

doi: 10.1073/pnas.0600681103
[27]

Xu S, Luo Y, Cai Z, Cao X, Hu X, et al. 2013. Functional diversity of CYCLOIDEA-like tcp genes in the control of zygomorphic flower development in Lotus japonicus. Journal of Integrative Plant Biology 55:221−31

doi: 10.1111/j.1744-7909.2012.01169.x
[28]

Wang Z, Luo Y, Li X, Wang L, Xu S, et al. 2008. Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proceedings of the National Academy of Sciences of the United States of America 105:10414−19

doi: 10.1073/pnas.0803291105
[29]

Zhao Y, Pfannebecker K, Dommes AB, Hidalgo O, Becker A, et al. 2018. Evolutionary diversification of CYC/TB1-like TCP homologs and their recruitment for the control of branching and floral morphology in Papaveraceae (basal eudicots). New Phytologist 220:317−31

doi: 10.1111/nph.15289
[30]

Preston JC, Hileman LC. 2012. Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. EvoDevo 3:6

doi: 10.1186/2041-9139-3-6
[31]

Bartlett ME, Specht CD. 2011. Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. American Journal of Botany 98:227−43

doi: 10.3732/ajb.1000246
[32]

Broholm SK, Tähtiharju S, Laitinen RAE, Albert VA, Teeri TH, et al. 2008. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proceedings of the National Academy of Sciences of the United States of America 105:9117−22

doi: 10.1073/pnas.0801359105
[33]

Ding L, Song A, Zhang X, Li S, Su J, et al. 2020. The core regulatory networks and hub genes regulating flower development in Chrysanthemum morifolium. Plant Molecular Biology 103:669−88

doi: 10.1007/s11103-020-01017-8
[34]

Tong J, Knox EB, Morden CW, Cellinese N, Mossolem F, et al. 2022. Duplication and expression patterns of CYCLOIDEA-like genes in Campanulaceae. EvoDevo 13:5

doi: 10.1186/s13227-021-00189-8
[35]

Uberti-Manassero NG, Lucero LE, Viola IL, Vegetti AC, Gonzalez DH. 2012. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. Journal of Experimental Botany 63:809−23

doi: 10.1093/jxb/err305
[36]

Huang T, Irish VF. 2015. Temporal control of plant organ growth by TCP transcription factors. Current Biology 25:1765−70

doi: 10.1016/j.cub.2015.05.024
[37]

Huang R, Irish VF. 2024. An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis. PLoS Genetics 20:e1011203

doi: 10.1371/journal.pgen.1011203
[38]

Wang J, Guan Y, Ding L, Li P, Zhao W, et al. 2019. The CmTCP20 gene regulates petal elongation growth in Chrysanthemum morifolium. Plant Science 280:248−57

doi: 10.1016/j.plantsci.2018.12.008
[39]

Pabón-Mora N, Madrigal Y, Alzate JF, Ambrose BA, Ferrándiz C, et al. 2020. Evolution of Class II TCP genes in perianth bearing Piperales and their contribution to the bilateral calyx in Aristolochia. New Phytologist 228:752−69

doi: 10.1111/nph.16719
[40]

Madrigal Y, Alzate JF, Pabón-Mora N. 2017. Evolution and expression patterns of TCP genes in Asparagales. Frontiers in Plant Science 8:9

doi: 10.3389/fpls.2017.00009
[41]

Chen YH, Tsai YJ, Huang JZ, Chen FC. 2005. Transcription analysis of peloric mutants of Phalaenopsis orchids derived from tissue culture. Cell Research 15:639−57

doi: 10.1038/sj.cr.7290334
[42]

Wu YJ, Chen SY, Hsu FC, Wu WL, Hsieh TF, et al. 2023. PeCIN8 expression correlates with flower size and resistance to yellow leaf disease in Phalaenopsis orchids. BMC Plant Biology 23:545

doi: 10.1186/s12870-023-04567-3
[43]

Lin YF, Chen YY, Hsiao YY, Shen CY, Hsu JL, et al. 2016. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris. Journal of Experimental Botany 67:5051−66

doi: 10.1093/jxb/erw273
[44]

Baczyński J, Claßen-Bockhoff R. 2023. Pseudanthia in angiosperms: a review. Annals of Botany 132:179−202

doi: 10.1093/aob/mcad103
[45]

Zhang T, Elomaa P. 2024. Development and evolution of the Asteraceae capitulum. New Phytologist 243:33−48

doi: 10.1111/nph.19590
[46]

Chapman MA, Leebens-Mack JH, Burke JM. 2008. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family. Molecular Biology and Evolution 25:1260−73

doi: 10.1093/molbev/msn001
[47]

Kim M, Cui ML, Cubas P, Gillies A, Lee K, et al. 2008. Regulatory genes control a key morphological and ecological trait transferred between species. Science 322:1116−19

doi: 10.1126/science.1164371
[48]

Chen J, Shen CZ, Guo YP, Rao GY. 2018. Patterning the Asteraceae capitulum: duplications and differential expression of the flower symmetry CYC2-like genes. Frontiers in Plant Science 9:551

doi: 10.3389/fpls.2018.00551
[49]

Huang D, Li X, Sun M, Zhang T, Pan H, et al. 2016. Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium. Frontiers in Plant Science 7:1633

doi: 10.3389/fpls.2016.01633
[50]

Yang Y, Sun M, Yuan C, Han Y, Zheng T, et al. 2019. Interactions between WUSCHEL- and CYC2-like transcription factors in regulating the development of reproductive organs in Chrysanthemum morifolium. International Journal of Molecular Sciences 20:1276

doi: 10.3390/ijms20061276
[51]

Wu X, Li J, Wen X, Zhang Q, Dai S. 2023. Genome-wide identification of the TCP gene family in Chrysanthemum lavandulifolium and its homologs expression patterns during flower development in different Chrysanthemum species. Frontiers in Plant Science 14:1276123

doi: 10.3389/fpls.2023.1276123
[52]

Qiu T, Li S, Zhao K, Jia D, Chen F, et al. 2023. Morphological characteristics and expression patterns of CmCYC2c of different flower shapes in Chrysanthemum morifolium. Plants 12:3728

doi: 10.3390/plants12213728
[53]

Bello MA, Cubas P, Álvarez I, Sanjuanbenito G, Fuertes-Aguilar J. 2017. Evolution and expression patterns of CYC/TB1 genes in Anacyclus: phylogenetic insights for floral symmetry genes in Asteraceae. Frontiers in Plant Science 8:589

doi: 10.3389/fpls.2017.00589
[54]

Zhu Y, Liu Y, Wang W, Li H, Liu C, et al. 2023. Identification and characterization of CYC2-like genes related to floral symmetric development in Tagetes erecta (Asteraceae). Gene 889:147707

doi: 10.1016/j.gene.2023.147804
[55]

Juntheikki-Palovaara I, Tähtiharju S, Lan T, Broholm SK, Rijpkema AS, et al. 2014. Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae). The Plant Journal 79:783−96

doi: 10.1111/tpj.12583
[56]

Tähtiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, et al. 2012. Evolution and diversification of the CYC/TB1 gene family in Asteraceae—a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae). Molecular Biology and Evolution 29:1155−66

doi: 10.1093/molbev/msr283
[57]

Chapman MA, Tang S, Draeger D, Nambeesan S, Shaffer H, et al. 2012. Genetic analysis of floral symmetry in van Gogh's sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae. PLoS Genetics 8:e1002628

doi: 10.1371/journal.pgen.1002628
[58]

Garcês HMP, Spencer VMR, Kim M. 2016. Control of floret symmetry by RAY3, SvDIV1B, and SvRAD in the capitulum of Senecio vulgaris. Plant Physiology 171:2055−68

doi: 10.1104/pp.16.00395
[59]

Elomaa P, Zhao Y, Zhang T. 2018. Flower heads in Asteraceae—recruitment of conserved developmental regulators to control the flower-like inflorescence architecture. Horticulture Research 5:36

doi: 10.1038/s41438-018-0056-8
[60]

Zhang T, Elomaa P. 2021. Don't be fooled: false flowers in Asteraceae. Current Opinion in Plant Biology 59:101972

doi: 10.1016/j.pbi.2020.09.006
[61]

Shen CZ, Chen J, Zhang CJ, Rao GY, Guo YP. 2021. Dysfunction of CYC2g is responsible for the evolutionary shift from radiate to disciform flowerheads in the Chrysanthemum group (Asteraceae: Anthemideae). The Plant Journal 106:1024−38

doi: 10.1111/tpj.15216
[62]

Fambrini M, Salvini M, Pugliesi C. 2011. A transposon-mediated inactivation of a CYCLOIDEA-like gene originates polysymmetric and androgynous ray flowers in Helianthus annuus. Genetica 139:1521−29

doi: 10.1007/s10709-012-9652-y
[63]

Mizzotti C, Fambrini M, Caporali E, Masiero S, Pugliesi C. 2015. A CYCLOIDEA-like gene mutation in sunflower determines an unusual floret type able to produce filled achenes at the periphery of the pseudanthium. Botany 93:171−81

doi: 10.1139/cjb-2014-0210
[64]

Fambrini M, Bernardi R, Pugliesi C. 2020. Ray flower initiation in the Helianthus radula inflorescence is influenced by a functional allele of the HrCYC2c gene. Genesis 58:e23386

doi: 10.1002/dvg.23401
[65]

Zhang CJ, Rong YL, Jiang CK, Guo YP, Rao GY. 2022. Co-option of a carotenoid cleavage dioxygenase gene (CCD4a) into the floral symmetry gene regulatory network contributes to the polymorphic floral shape–color combinations in Chrysanthemum sensu lato. New Phytologist 236:1197−211

doi: 10.1111/nph.18325
[66]

Ren JB, Guo YP. 2015. Behind the diversity: ontogenies of radiate, disciform, and discoid capitula of Chrysanthemum and its allies. Journal of Systematics and Evolution 53:520−28

doi: 10.1111/jse.12154
[67]

Rong YL, Niu CY, Zhang CJ, Guo YP, Rao GY. 2024. Lineage-specific duplication of a CYCLOIDEA2 gene and the diversification of capitula in the tribe Anthemideae (Asteraceae). Journal of Systematics and Evolution 00:Early View

doi: 10.1111/jse.13134
[68]

Baczyński J, Celep F, Spalik K, Claßen-Bockhoff R. 2022. Flower-like meristem conditions and spatial constraints shape architecture of floral pseudanthia in Apioideae. EvoDevo 13:19

doi: 10.1186/s13227-022-00204-6
[69]

Carlson SE, Howarth DG, Donoghue MJ. 2011. Diversification of CYCLOIDEA-like genes in Dipsacaceae (Dipsacales): implications for the evolution of capitulum inflorescences. BMC Evolutionary Biology 11:325

doi: 10.1186/1471-2148-11-325
[70]

Berger BA, Thompson V, Lim A, Ricigliano V, Howarth DG. 2016. Elaboration of bilateral symmetry across Knautia macedonica capitula related to changes in ventral petal expression of CYCLOIDEA-like genes. EvoDevo 7:8

doi: 10.1186/s13227-016-0045-7
[71]

Claßen-Bockhoff R, Ruonala R, Bull-Hereñu K, Marchant N, Albert VA. 2013. The unique pseudanthium of Actinodium (Myrtaceae) - morphological reinvestigation and possible regulation by CYCLOIDEA-like genes. EvoDevo 4:8

doi: 10.1186/2041-9139-4-8
[72]

Su S, Xiao W, Guo W, Yao X, Xiao J, et al. 2017. The CYCLOIDEA–RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae). New Phytologist 215:1582−93

doi: 10.1111/nph.14673
[73]

Kondo M, Tanikawa N, Nishijima T. 2020. Mutation of CYCLOIDEA expands variation of dorsal–ventral flower asymmetry expressed as a pigmentation pattern in Torenia fournieri cultivars. The Horticultural Journal 89:481−87

doi: 10.2503/hortj.UTD-174
[74]

Dong Y, Liu J, Li PW, Li CQ, Lü TF, et al. 2018. Evolution of Darwin's Peloric gloxinia (Sinningia speciosa) is caused by a null mutation in a pleiotropic TCP gene. Molecular Biology and Evolution 35:1901−15

doi: 10.1093/molbev/msy090
[75]

Zheng X, Lan J, Yu H, Zhang J, Zhang Y, et al. 2022. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. Plant Communications 3:100309

doi: 10.1016/j.xplc.2022.100309
[76]

Narumi T, Aida R, Koyama T, Yamaguchi H, Sasaki K, et al. 2011. Arabidopsis chimeric TCP3 repressor produces novel floral traits in Torenia fournieri and Chrysanthemum morifolium. Plant Biotechnology 28:131−40

doi: 10.5511/plantbiotechnology.11.0121a
[77]

Gao Y, Li J, He J, Yu Y, Qian Z, et al. 2024. BLADE-ON-PETIOLE interacts with CYCLOIDEA to fine-tune CYCLOIDEA-mediated flower symmetry in monkeyflowers (Mimulus). Science Advances 10:eado4571

doi: 10.1126/sciadv.ado4571
[78]

Yang X, Zhao XG, Li CQ, Liu J, Qiu ZJ, et al. 2015. Distinct regulatory changes underlying differential expression of teosinte branched1-cycloidea-proliferating cell factor genes associated with petal variations in zygomorphic flowers of Petrocosmea spp. of the family Gesneriaceae. Plant Physiology 169:2138−51

doi: 10.1104/pp.15.01181
[79]

Zhao Y, Broholm SK, Wang F, Rijpkema AS, Lan T, et al. 2020. TCP and MADS-box transcription factor networks regulate heteromorphic flower type identity in Gerbera hybrida. Plant Physiology 184:1455−68

doi: 10.1104/pp.20.00702
[80]

Wen X, Qi S, Huang H, Wu X, Zhang B, et al. 2019. The expression and interactions of ABCE-class and CYC2-like genes in the capitulum development of Chrysanthemum lavandulifolium and C. × morifolium. Plant Growth Regulation 88:205−14

doi: 10.1007/s10725-019-00491-5
[81]

Liu MM, Wang MM, Yang J, Wen J, Guo PC, et al. 2019. Evolutionary and comparative expression analyses of TCP transcription factor gene family in land plants. International Journal of Molecular Sciences 20:3591

doi: 10.3390/ijms20143591
[82]

Clark JI, Coen ES. 2002. The cycloidea gene can respond to a common dorsoventral prepattern in Antirrhinum. The Plant Journal 30:639−48

doi: 10.1046/j.1365-313X.2002.01310.x
[83]

Wang Q, Su Z, Chen J, Chen W, He Z, et al. 2024. HaMADS3, HaMADS7, and HaMADS8 are involved in petal prolongation and floret symmetry establishment in sunflower (Helianthus annuus L.). PeerJ 12:e17586

doi: 10.7717/peerj.17586
[84]

Wei X, Yuan M, Zheng BQ, Zhou L, Wang Y. 2024. Genome-wide identification and characterization of TCP gene family in Dendrobium nobile and their role in perianth development. Frontiers in Plant Science 15:1352119

doi: 10.3389/fpls.2024.1352119
[85]

Corley SB, Carpenter R, Copsey L, Coen E. 2005. Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences of the United States of America 102:5068−73

doi: 10.1073/pnas.0501340102
[86]

Galego L, Almeida J. 2002. Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes & Development 16:880−91

doi: 10.1101/gad.221002
[87]

Raimundo J, Sobral R, Bailey P, Azevedo H, Galego L, et al. 2013. A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in Antirrhinum flower asymmetry. The Plant Journal 75:527−38

doi: 10.1111/tpj.12225
[88]

Crawford BCW, Nath U, Carpenter R, Coen ES. 2004. Cincinnata controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiology 135:244−53

doi: 10.1104/pp.103.036368
[89]

Chen HW, Lee PL, Wang CN, Hsu HJ, Chen JC. 2020. Silencing of PhLA, a CIN-TCP gene, causes defected petal conical epidermal cell formation and results in reflexed corolla lobes in petunia. Botanical Studies 61:24

doi: 10.1186/s40529-020-00300-7
[90]

Baumann K, Perez-Rodriguez M, Bradley D, Venail J, Bailey P, Jin H, et al. 2007. Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development 134:1691−701

doi: 10.1242/dev.02836
[91]

Altman A, Shennan S, Odling-smee J. 2022. Ornamental plant domestication by aesthetics-driven human cultural niche construction. Trends in Plant Science 27:124−38

doi: 10.1016/j.tplants.2021.09.004
[92]

Tang YH, Zhong YY, Huang X. 2024. Identification and functional analysis of the flower development-related TCP genes in Erycina pusilla. Horticulturae 10:534

doi: 10.3390/horticulturae10060534
[93]

Zhou Y, Xu Z, Zhao K, Yang W, Cheng T, et al. 2016. Genome-wide identification, characterization and expression analysis of the TCP gene family in Prunus mume. Frontiers in Plant Science 7:1301

doi: 10.3389/fpls.2016.01301
[94]

Zhang S, Zhou Q, Chen F, Wu L, Liu B, et al. 2020. Genome-wide identification, characterization and expression analysis of TCP transcription factors in Petunia. International Journal of Molecular Sciences 21:6594

doi: 10.3390/ijms21186594
[95]

Raguso RA. 2004. Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement. Current Opinion in Plant Biology 7:434−40

doi: 10.1016/j.pbi.2004.05.010
[96]

Schaefer HM, Schaefer V, Levey DJ. 2004. How plant-animal interactions signal new insights in communication. Trends in Ecology & Evolution 19:577−84

doi: 10.1016/j.tree.2004.08.003
[97]

Muhlemann JK, Klempien A, Dudareva N. 2014. Floral volatiles: from biosynthesis to function. Plant, Cell & Environment 37:1936−49

doi: 10.1111/pce.12314
[98]

Zhao Y, Zhang T, Broholm SK, Tähtiharju S, Mouhu K, et al. 2016. Evolutionary co-option of floral meristem identity genes for patterning of the flower-like Asteraceae inflorescence. Plant Physiology 172:284−96

doi: 10.1104/pp.16.00779
[99]

Hu Y, Patra P, Pisanty O, Shafir A, Belew ZM, et al. 2023. Multi-Knock—a multi-targeted genome-scale CRISPR toolbox to overcome functional redundancy in plants. Nature Plants 9:572−87

doi: 10.1038/s41477-023-01374-4