| [1] |
Tsang SH, Sharma T. 2018. Retinitis pigmentosa (non-syndromic). Advances in Experimental Medicine and Biology 1085:125−30 doi: 10.1007/978-3-319-95046-4_25 |
| [2] |
Somasundaran S, Constable IJ, Mellough CB, Carvalho LS. 2020. Retinal pigment epithelium and age-related macular degeneration: a review of major disease mechanisms. Clinical & Experimental Ophthalmology 48:1043−56 doi: 10.1111/ceo.13834 |
| [3] |
Fahim A. 2018. Retinitis pigmentosa: recent advances and future directions in diagnosis and management. Current Opinion in Pediatrics 30:725−33 doi: 10.1097/mop.0000000000000690 |
| [4] |
Gawęcki M. 2020. Laser treatment in retinitis pigmentosa-a review. Lasers in Medical Science 35:1663−70 doi: 10.1007/s10103-020-03036-9 |
| [5] |
Mitchell P, Liew G, Gopinath B, Wong TY. 2018. Age-related macular degeneration. The Lancet 392:1147−59 doi: 10.1016/S0140-6736(18)31550-2 |
| [6] |
Huang D, Zhao C, Ju R, Kumar A, Tian G, et al. 2016. VEGF-B inhibits hyperglycemia- and Macugen-induced retinal apoptosis. Scientific Reports 6:26059 doi: 10.1038/srep26059 |
| [7] |
Cornebise C, Courtaut F, Taillandier-Coindard M, Valls-Fonayet J, Richard T, et al. 2020. Red wine extract inhibits VEGF secretion and its signaling pathway in retinal ARPE-19 cells to potentially disrupt AMD. Molecules 25:5564 doi: 10.3390/molecules25235564 |
| [8] |
Ziccardi L, Cordeddu V, Gaddini L, Matteucci A, Parravano M, et al. 2019. Gene therapy in retinal dystrophies. International |
| [9] |
Cho C, Duong TT, Mills JA. 2019. A mini review: moving iPSC-derived retinal subtypes forward for clinical applications for retinal degenerative diseases. Advances in Experimental Medicine and Biology 1185:557−61 doi: 10.1007/978-3-030-27378-1_91 |
| [10] |
Tan E, Ding XQ, Saadi A, Agarwal N, Naash MI, et al. 2004. Expression of cone-photoreceptor–specific antigens in a cell line derived from retinal tumors in transgenic mice. Investigative Opthalmology & Visual Science 45:764 doi: 10.1167/iovs.03-1114 |
| [11] |
Han F, Xu G. 2020. Stem cell transplantation therapy for retinal degenerative diseases. Advances in Experimental Medicine and Biology 1266:127−39 doi: 10.1007/978-981-15-4370-8_9 |
| [12] |
Zhu J, Cifuentes H, Reynolds J, Lamba DA. 2017. Immunosuppression via loss of IL2rγ enhances long-term functional integration of hESC-derived photoreceptors in the mouse retina. Cell Stem Cell 20:374−84. e5 doi: 10.1016/j.stem.2016.11.019 |
| [13] |
García-Ayuso D, Di Pierdomenico J, Vidal-Sanz M, Villegas-Pérez MP. 2019. Retinal ganglion cell death as a late remodeling effect of photoreceptor degeneration. International Journal of Molecular Sciences 20:4649 doi: 10.3390/ijms20184649 |
| [14] |
Nagar S, Krishnamoorthy V, Cherukuri P, Jain V, Dhingra NK. 2009. Early remodeling in an inducible animal model of retinal degeneration. Neuroscience 160:517−29 doi: 10.1016/j.neuroscience.2009.02.056 |
| [15] |
Zhang J, Xu D, Ouyang H, Hu S, Li A, et al. 2017. Neuroprotective effects of methyl 3, 4 dihydroxybenzoate in a mouse model of retinitis pigmentosa. Experimental Eye Research 162:86−96 doi: 10.1016/j.exer.2017.07.004 |
| [16] |
Sachdev PS, Anstey KJ, Parslow RA, Wen W, Maller J, et al. 2006. Pulmonary function, cognitive impairment and brain atrophy in a middle-aged community sample. Dementia and Geriatric Cognitive Disorders 21:300−8 doi: 10.1159/000091438 |
| [17] |
Yun M. 2015. Changes in regenerative capacity through lifespan. International Journal of Molecular Sciences 16:25392−432 doi: 10.3390/ijms161025392 |
| [18] |
Goldberg JL, Klassen MP, Hua Y, Barres BA. 2002. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296:1860−64 doi: 10.1126/science.1068428 |
| [19] |
Polans AS, Witkowska D, Haley TL, Amundson D, Baizer L, et al. 1995. Recoverin, a photoreceptor-specific calcium-binding protein, is expressed by the tumor of a patient with cancer-associated retinopathy. Proceedings of the National Academy of Sciences of the United States of America 92:9176−80 doi: 10.1073/pnas.92.20.9176 |
| [20] |
Li X, Xie J, Zhai Y, Fang T, Rao N, et al. 2019. Differentiation of stem cells from human exfoliated deciduous teeth into retinal photoreceptor-like cells and their sustainability in vivo. Stem Cells International 2019:2562981 doi: 10.1155/2019/2562981 |
| [21] |
Reisenhofer MH, Balmer JM, Enzmann V. 2017. What can pharmacological models of retinal degeneration tell us? Current Molecular Medicine 17(2):100−7 doi: 10.2174/1566524017666170331162048 |
| [22] |
Lee J, Pelis RM. 2016. Drug transport by the blood–aqueous humor barrier of the eye. Drug Metabolism and Disposition 44(10):1675−81 doi: 10.1124/dmd.116.069369 |
| [23] |
Sharma D, Zachary I, Jia H. 2023. Mechanisms of acquired resistance to anti-VEGF therapy for neovascular eye diseases. Investigative Opthalmology & Visual Science 64(5):28 doi: 10.1167/iovs.64.5.28 |
| [24] |
Yu Y, Liu F, He L, Ramakrishna S, Zheng M, et al. 2018. Human induced pluripotent stem cell-derived cardiomyocytes reveal bradycardiac effects caused by co-administration of sofosbuvir and amiodarone. ASSAY and Drug Development Technologies 16(4):222−29 doi: 10.1089/adt.2017.834 |