| [1] |
Okwuonu IC, Narayanan NN, Egesi CN, Taylor NJ. 2021. Opportunities and challenges for biofortification of cassava to address iron and zinc deficiency in Nigeria. Global Food Security 28:100478 doi: 10.1016/j.gfs.2020.100478 |
| [2] |
Mbanjo EGN, Rabbi IY, Ferguson ME, Kayondo SI, Eng NH, et al. 2021. Technological innovations for improving cassava production in sub-Saharan Africa. Frontiers in Genetics 11:623736 doi: 10.3389/fgene.2020.623736 |
| [3] |
Kaur K, Ahluwalia P. 2017. Cassava as potential crop for the food and fermentation industry: a review. International Journal of Food and Fermentation Technology 7(1):1−12 doi: 10.5958/2277-9396.2017.00001.0 |
| [4] |
Byju G, Suja G. 2020. Mineral nutrition of cassava. In Advances in Agronomy, ed. Sparks DL. vol. 159. Cambridge, MA: Academic Press. pp. 169−235. doi: 10.1016/bs.agron.2019.08.005 |
| [5] |
Ezui KS, Franke AC, Mando A, Ahiabor BDK, Tetteh FM, et al. 2016. Fertiliser requirements for balanced nutrition of cassava across eight locations in West Africa. Field Crops Research 185:69−78 doi: 10.1016/j.fcr.2015.10.005 |
| [6] |
Dimkpa C, Adzawla W, Pandey R, Atakora WK, Kouame AK, et al. 2023. Fertilizers for food and nutrition security in sub-Saharan Africa: an overview of soil health implications. Frontiers in Soil Science 3:1123931 doi: 10.3389/fsoil.2023.1123931 |
| [7] |
Niu J, Liu C, Huang M, Liu K, Yan D. 2021. Effects of foliar fertilization: a review of current status and future perspectives. Journal of Soil Science and Plant Nutrition 21:104−18 doi: 10.1007/s42729-020-00346-3 |
| [8] |
Akamigbo FOR, Nnaji GU. 2011. Climate change and Nigerian soils: vulnerability, impact and adaptation. Agro-Sci 10(1):80−90 doi: 10.4314/as.v10i1.68723 |
| [9] |
Okezie U, Ehika JI. 2018. Evaluation of some geophysical and physicochemical characteristics of soil and groundwater resources in Sapele, south-south Nigeria. Journal of Applied Sciences and Environmental Management 22(4):577−82 doi: 10.4314/jasem.v22i4.25 |
| [10] |
Kannan S. 2010. Foliar fertilization for sustainable crop production. Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming. vol. 4. Dordrecht, Netherlands: Springer. pp. 371–402. doi: 10.1007/978-90-481-8741-6_13 |
| [11] |
Fageria NK, Barbosa Filho MP, Moreira A, Guimarães CM. 2009. Foliar fertilization of crop plants. Journal of Plant Nutrition 32(6):1044−64 doi: 10.1080/01904160902872826 |
| [12] |
Alshaal T, El-Ramady H. 2017. Foliar application: from plant nutrition to biofortification. Environment, Biodiversity and Soil Security 1:71−83 doi: 10.21608/jenvbs.2017.1089.1006 |
| [13] |
Patil B, Chetan HT. 2018. Foliar fertilization of nutrients. Marumegh 3(1):49−53 |
| [14] |
Adiele JG, Schut AGT, Ezui KS, Pypers P, Giller KE. 2021. Dynamics of N-P-K demand and uptake in cassava. Agronomy for Sustainable Development 41:1 doi: 10.1007/s13593-020-00649-w |
| [15] |
El-Sharkawy MA, Cadavid LF. 2002. Response of cassava to prolonged water stress imposed at different stages of growth. Experimental Agriculture 38(3):333−50 doi: 10.1017/S001447970200306X |
| [16] |
Cock JH, Connor DJ. 2021. Cassava. In Crop physiology: case histories for major crops, eds. Sadras VO, Calderini DF. pp. 588–633. Cambridge, MA: Academic Press. doi: 10.1016/B978-0-12-819194-1.00019-0 |
| [17] |
Laekemariam F. 2016. Soil nutrient status of smallholder cassava farms in southern Ethiopia. Journal of Biology, Agriculture and Healthcare 6:4−10 |
| [18] |
Srivastava AK, Ewert F, Akinwumiju AS, Zeng W, Ceglar A, et al. 2023. Cassava yield gap—a model-based assessment in Nigeria. Frontiers in Sustainable Food Systems 6:1058775 doi: 10.3389/fsufs.2022.1058775 |
| [19] |
Vanlauwe B, Amede T, Bationo A, Bindraban P, Breman H, et al. 2023. Fertilizer and soil health in Africa: the role of fertilizer in building soil health to sustain farming and address climate change. Report. International Fertilizer Development Center (IFDC). |
| [20] |
Ayoola OT, Makinde EA. 2007. Complementary organic and inorganic fertilizer application: Influence on growth and yield of cassava/maize/melon intercrop with a relayed cowpea. Australian Journal of Basic and Applied Sciences 1:187−92 |
| [21] |
Reuveni R, Reuveni M. 1998. Foliar-fertilizer therapy—a concept in integrated pest management. Crop Protection 17:111−18 doi: 10.1016/S0261-2194(97)00108-7 |
| [22] |
Panitnok K, Chaisri S, Sarobol E, Ngamprasitthi S, Chaisri P, et al. 2013. The combination effects of zinc, magnesium, sulphur foliar fertilizer management on cassava growth and yield grown on Map Bon, coarse-loamy variant soil. Procedia-Social and Behavioral Sciences 91:288−93 doi: 10.1016/j.sbspro.2013.08.425 |
| [23] |
Anwar S, Khalilzadeh R, Khan S, Zaib-un-Nisa, Bashir R, et al. 2021. Mitigation of drought stress and yield improvement in wheat by zinc foliar spray relates to enhanced water use efficiency and zinc contents. International Journal of Plant Production 15:377−89 doi: 10.1007/s42106-021-00136-6 |
| [24] |
Borišev M, Borišev I, Župunski M, Arsenov D, Pajević S, et al. 2016. Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles. PLoS One 11:e0166248 doi: 10.1371/journal.pone.0166248 |
| [25] |
Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, et al. 2015. Does integrated nutrient management enhance agricultural productivity. Journal of Pure and Applied Microbiology 9:1211−22 |
| [26] |
Roberts TL. 2007. Right product, right rate, right time and right place … the foundation of best management practices for fertilizer. International Workshop on Best Fertilizer Management Practices, 7–9 March 2007, Brussels, Belgium. Paris, France: International Fertilizer Association (IFA). pp. 29–32. www.fertilizer.org/wp-content/uploads/2023/01/2007_IFA_FBMP-Workshop_Brussels.pdf |
| [27] |
Daramola A, Ehui S, Ukeje E, McIntire J. 2007. Agricultural export potential in Nigeria. In Economic Policy Options for a Prosperous Nigeria, eds. Collier P, Pattillo C. London: Palgrave Macmillan. pp. 1–38. |
| [28] |
Mancosu N, Snyder RL, Kyriakakis G, Spano D. 2015. Water scarcity and future challenges for food production. Water 7:975−92 doi: 10.3390/w7030975 |
| [29] |
Ansar M, Fathurrahman. 2018. Sustainable integrated farming system: a solution for national food security and sovereignty. IOP Conference Series Earth and Environmental Science 157(1):012061 doi: 10.1088/1755-1315/157/1/012061 |
| [30] |
Olaleye AO, Akinbola GE, Marake VM, Molete SF, Mapheshoane B. 2008. Soil in suitability evaluation for irrigated lowland rice culture in southwestern Nigeria: management implications for sustainability. Communications in Soil Science and Plant Analysis 39(19-20):2920−38 doi: 10.1080/00103620802432824 |
| [31] |
Jimoh AI, Yusuf YO, Yau SL. 2016. Soil suitability evaluation for rain-fed maize production at Gabari District Zaria Kaduna State, Nigeria. Ethiopian Journal of Environmental Studies and Management 9(2):137−47 doi: 10.4314/ejesm.v9i2.2 |
| [32] |
Sainju UM, Ghimire R, Pradhan GP. 2019. Nitrogen fertilization I: Impact on crop, soil, and environment. Nitrogen Fixation, eds. Rigobelo E, Serra A, Surguchov A. vol. 9. London: IntechOpen. pp. 1−9. doi: 10.5772/intechopen.86028 |
| [33] |
Fageria NK. 2014. Nitrogen Management in Crop Production. Boca Raton, FL: CRC Press. doi: 10.1201/b17101 |
| [34] |
Yang X, Post WM, Thornton PE, Jain A. 2013. The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 10(4):2525−37 doi: 10.5194/bg-10-2525-2013 |
| [35] |
Ajiboye G, Faniyi T, Mesele S. 2018. Phosphorus sorption under changing soil drainage condition of a wetland—implications for sustainable intensification of agriculture. International Journal of Plant & Soil Science 22(2):1−10 doi: 10.9734/ijpss/2018/38687 |
| [36] |
Ajiboye GA, Azeez JO, Mesele SA, Agbaje M. 2018. Phosphorus releasing characteristics of Ogun phosphate rock acidulated with cashew nutshell liquid. Communications in Soil Science and Plant Analysis 49(13):1563−69 doi: 10.1080/00103624.2018.1474896 |
| [37] |
Huang PM. 2005. Chemistry of potassium in soils. In Chemical Processes in Soils, eds. Tabatabai MA, Sparks DL. vol. 8. Madison, WI, USA: Soil Science Society of America. pp. 227−92. doi: 10.2136/sssabookser8.c4 |
| [38] |
Khan SA, Mulvaney RL, Ellsworth TR. 2014. The potassium paradox: Implications for soil fertility, crop production, and human health. Renewable Agriculture and Food Systems 29(1):3−27 doi: 10.1017/S1742170513000318 |
| [39] |
Akinrinde EA. 2006. Strategies for improving crops' use-efficiencies of fertilizer nutrients in sustainable agricultural systems. Pakistan Journal of Nutrition 5(2):185−93 doi: 10.3923/pjn.2006.185.193 |
| [40] |
Deb S, Bhadoria PBS, Mandal B, Rakshit A, Singh HB. 2015. Soil organic carbon: Towards better soil health, productivity, and climate change mitigation. Climate Change and Environmental Sustainability 3(1):26−34 doi: 10.5958/2320-642X.2015.00003.4 |
| [41] |
Martius C, Tiessen H, Vlek PLG. 2001. The management of organic matter in tropical soils: what are the priorities? In Managing Organic Matter in Tropical Soils: Scope and Limitations. Dordrecht, Netherlands: Springer. pp. 1–6. doi: 10.1007/978-94-017-2172-1_1 |
| [42] |
Mesele SA, Melenya C, Bougma A, Azeez JO, Ajiboye GA, et al. 2024. Soil mineralogical and nutrient characteristics of forest islands and surrounding ecosystem types in West Africa suggest anthropogenic soil improvement. Plant and Soil 495:157−75 doi: 10.1007/s11104-023-06042-2 |
| [43] |
Mesele SA, Ajiboye GA. 2021. Pedo-transfer functions for predicting total soil nitrogen in different land use types under some tropical environments. Ghana Journal of Science 61(2):45−56 doi: 10.4314/gjs.v61i2.5 |
| [44] |
Vasudevan D, Bruland GL, Torrance BS, Upchurch VG, MacKay AA. 2009. pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption. Geoderma 151:68−76 doi: 10.1016/j.geoderma.2009.03.007 |
| [45] |
Oades JM, Gillman GP, Uehara G, Hue NV, Van Noordwijk M, et al. 1989. Interactions of soil organic matter and variable-charge clays. Dynamics of Soil Organic Matter in Tropical Ecosystems 3:69−96 |
| [46] |
Radulov I, Berbecea A, Sala F, Crista F, Lato A. 2011. Mineral fertilization influence on soil pH, cationic exchange capacity, and nutrient content. Research Journal of Agricultural Science 43:160−65 |
| [47] |
Sumner ME, Noble AD. 2003. Soil acidification: the world story. Handbook of Soil Acidity, ed. Rengel Z. New York: Marcel Dekker. pp. 1–28. doi: 10.1201/9780203912317 |
| [48] |
Imtiaz M, Rashid A, Khan P, Memon MY, Aslam M. 2010. The role of micronutrients in crop production and human health. Pakistan Journal of Botany 42:2565−78 |
| [49] |
Arif M, Chohan MA, Ali S, Gul R, Khan S. 2006. Response of wheat to foliar application of nutrients. Journal of Agricultural and Biological Science 1(4):30−34 |
| [50] |
Berger KC. 1949. Boron in soils and crops. In Advances in Agronomy. Amsterdam: Elsevier. pp. 321−51. doi: 10.1016/s0065-2113(08)60752-x |
| [51] |
Janket A, Vorasoot N, Kesmala T, Jogloy S. 2018. Influence of zinc, copper, and manganese on dry matter yield and physiological traits of three cassava genotypes grown on soil micronutrient deficiencies. Pakistan Journal of Botany 50:1719−25 |
| [52] |
Goldbach HE. 2020. Advances in understanding boron cycling in soils, uptake/use by plants, and ways of optimizing boron use efficiency in crop production. In Achieving Sustainable Crop Nutrition. Cambridge, UK: Burleigh Dodds Science Publishing. pp. 355–406. doi: 10.19103/as.2019.0062.17 |
| [53] |
Johnson IR. 1990. Plant respiration in relation to growth, maintenance, ion uptake, and nitrogen assimilation. Plant, Cell & Environment 13:319−28 doi: 10.1111/j.1365-3040.1990.tb02135.x |
| [54] |
Ray S, Maitra S, Sairam M, Sravya M, Priyadarshini A, et al. 2024. An unravelled potential of foliar application of micro and beneficial nutrients in cereals for ensuring food and nutritional security. International Journal of Experimental Research and Review 41:19−42 doi: 10.52756/ijerr.2024.v41spl.003 |
| [55] |
Millar KD. 2008. Physiological and nutritional studies of oilseed crops in response to competition and manganese supply. Dissertation. Southern Illinois University at Carbondale. pp. 1–200 |
| [56] |
Guzman MJ, Valenzuela JL, Sánchez A, Romero L. 1990. A method for diagnosing the status of horticultural crops. II. Micronutrients. Phyton 51:43−56 |
| [57] |
Marschner H, Kirkby EA, Cakmak I. 1996. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. Journal of Experimental Botany 47:1255−63 doi: 10.1093/jxb/47.Special_Issue.1255 |
| [58] |
Jensen CR, Battilani A, Plauborg F, Psarras G, Chartzoulakis K, et al. 2010. Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes. Agricultural Water Management 98(3):403−13 doi: 10.1016/j.agwat.2010.10.018 |
| [59] |
Evans SP, Knezevic SZ, Lindquist JL, Shapiro CA, Blankenship EE. 2003. Nitrogen application influences the critical period for weed control in corn. Weed Science 51(3):408−17 doi: 10.1614/0043-1745(2003)051[0408:NAITCP]2.0.CO;2 |
| [60] |
Pellet D, El-Sharkawy MA. 1994. Sink-source relations in cassava: effects of reciprocal grafting on yield and leaf photosynthesis. Experimental Agriculture 30(3):359−67 doi: 10.1017/S0014479700024479 |
| [61] |
McCauley A, Jones C, Jacobsen J. 2011. Plant Nutrient Functions and Deficiency and Toxicity Symptoms. Nutrient Management Module No. 9. Montana State University, Extension Publications, Bozeman, USA. https://s3.wp.wsu.edu/uploads/sites/2723/2021/08/Plant-Nutrient-Functions-and-Deficiency-and-Toxicity-Symptoms-MSU-2013.pdf |
| [62] |
Mesele SA, Soremi PS, Adigun JK. 2024. Exploring farmer's assessment of soil quality and root yield in cassava-based cropping systems. Journal of the Saudi Society of Agricultural Sciences 23(8):533−41 doi: 10.1016/j.jssas.2024.06.003 |
| [63] |
Siva Prasad PN, Subbarayappa CT, Reddy MR, Meena HM. 2017. Development of critical limits for different crops grown in different soils and its use in optimizing fertilizer rates. International Journal of Current Microbiology and Applied Sciences 6:241−49 doi: 10.20546/ijcmas.2017.606.029 |
| [64] |
Hassan NMK, Marzouk NM, Fawzy ZF, Saleh SA. 2020. Effect of bio-stimulants foliar applications on growth, yield, and product quality of two Cassava cultivars. Bulletin of the National Research Centre 44:1−9 doi: 10.1186/s42269-020-00317-9 |
| [65] |
Vejan P, Khadiran T, Abdullah R, Ahmad N. 2021. Controlled release fertilizer: A review on developments, applications and potential in agriculture. Journal of Controlled Release 339:321−34 doi: 10.1016/j.jconrel.2021.10.003 |
| [66] |
Adiele J, Schut AGT, Ezui KS, Pypers P, Egesi CN, et al. 2019. Agronomic efficiency and nutrient recovery from fertilizers by cassava on fields with low soil fertility in West Africa. 2019 ASA-CSSA-SSSA International Annual Meeting, San Antonio, Texas, USA. American Society of Agronomy, San Antonio, USA. https://research.wur.nl/en/publications/agronomic-efficiency-and-nutrient-recovery-from-fertilizers-by-ca |
| [67] |
Imas P, John KS. 2013. Potassium nutrition of cassava. Electronic Journal of International Fertilizer Communications (e-IFC). 2013(34):13−18 (in Chinese). www.ipipotash.org/uploads/udocs/e-ifc-no-34-june-2013-chinese.pdf |