| [1] |
Shi L, Lin X, Tang B, Zhao R, Wang Y, et al. 2024. Genome-wide analysis of the lateral organ boundaries domain (LBD) gene family in sweet potato (Ipomoea batatas). Genes 15(2):237 doi: 10.3390/genes15020237 |
| [2] |
FAOSTAT. 2022. Crops and livestock products. Statistics Division of Food and Agriculture Organization of the United Nations. www.fao.org/faostat/zh/#data/QC |
| [3] |
Chen H, Zhou S, Li X, Yang H. 2022. Exogenous progesterone alleviates chilling injury by upregulating IbAOX1 to mediate redox homeostasis and proline accumulation in postharvest sweetpotato tuberous root. Postharvest Biology and Technology 183:111738 doi: 10.1016/j.postharvbio.2021.111738 |
| [4] |
Liu M, Li X, Zhou S, Wang TTY, Zhou S, et al. 2020. Dietary fiber isolated from sweet potato residues promotes a healthy gut microbiome profile. Food & Function 11:689−99 doi: 10.1039/c9fo01009b |
| [5] |
Geng S, Liu Z, Golding JB, Pristijono P, Lv Z, et al. 2023. Transcriptomic analyses of carvone inhibited sprouting in sweet potato (Ipomoea batatas (L.) Lam cv 'Yan 25') storage roots. Postharvest Biology and Technology 195:112142 doi: 10.1016/j.postharvbio.2022.112142 |
| [6] |
Sugri I, Maalekuu BK, Kusi F, Gaveh E. 2017. Quality and shelf-life of sweet potato as influenced by storage and postharvest treatments. Trends in Horticultural Research 7:1−10 doi: 10.3923/thr.2017.1.10 |
| [7] |
Cheema MUA, Rees D, Colgan RJ, Taylor M, Westby A. 2013. The effects of ethylene, 1-MCP and AVG on sprouting in sweet potato roots. Postharvest Biology and Technology 85:89−93 doi: 10.1016/j.postharvbio.2013.05.001 |
| [8] |
Dunga TT, Lee UJ, Oh Y, Kim M. 2023. Gas Sensor-Based Techniques for Detecting Ethylene (C2H4). Applied Science and Convergence Technology 32(4):82−88 doi: 10.5757/ASCT.2023.32.4.82 |
| [9] |
Boivin M, Bourdeau N, Barnabé S, Desgagné-Penix I. 2020. Sprout suppressive molecules effective on potato (Solanum tuberosum) tubers during storage: a review. American Journal of Potato Research 97:451−63 doi: 10.1007/s12230-020-09794-0 |
| [10] |
Blankenship SM, Dole JM. 2003. 1-methylcyclopropene: a review. Postharvest Biology and Technology 28:1−25 doi: 10.1016/S0925-5214(02)00246-6 |
| [11] |
Schotsmans WC, Prange RK, Binder BM. 2009. 1-Methylcyclopropene: mode of action and relevance in postharvest horticulture research. Horticultural Reviews 35:263−313 |
| [12] |
Cao J, Liu P, Wang X, Wang Q, Shi J. 2021. Combination of wound healing with 1-methylcyclopropene and wound detection by iodine solution to maintain the quality of sweet potato during long-term storage. International Journal of Agricultural and Biological Engineering 14(3):241−46 doi: 10.25165/j.ijabe.20211403.5735 |
| [13] |
Forney CF, Cue K, Fillmore S. 2022. Ethylene inhibits sprouting of onion bulbs during long-term storage. HortScience 57(6):686−91 doi: 10.21273/hortsci16547-22 |
| [14] |
Lv J, Bai L, Han X, Xu D, Ding S, et al. 2021. Effects of 1-MCP treatment on sprouting and preservation of ginger rhizomes during storage at room temperature. Food Chemistry 349:129004 doi: 10.1016/j.foodchem.2021.129004 |
| [15] |
Lin W, Liu Y, Di J, Ren G, Wang W, et al. 2022. Effects of 1-MCP treatment on physiology and storage quality of root mustard at ambient temperature. Foods 11(19):2978 doi: 10.3390/foods11192978 |
| [16] |
Kou J, Zang X, Li M, Li W, Zhang H, et al. 2023. Effects of ethylene and 1-methylcyclopropene on the quality of sweet potato roots during storage: a review. Horticulturae 9(6):667 doi: 10.3390/horticulturae9060667 |
| [17] |
Amoah RS, Landahl S, Terry LA. 2016. The timing of exogenous ethylene supplementation differentially affects stored sweetpotato roots. Postharvest Biology and Technology 120:92−102 doi: 10.1016/j.postharvbio.2016.05.013 |
| [18] |
Pankomera P. 2015. Effects of postharvest treatments on sweet potato (Ipomoea batatas) storage quality. Thesis. Massey University, New Zealand. pp. 83−109 |
| [19] |
Xue Q, Fan H, Yao F, Cao X, Liu M, et al. 2020. Transcriptomics and targeted metabolomics profilings for elucidation of pigmentation in Lonicera japonica flowers at different developmental stages. Industrial Crops and Products 145:111981 doi: 10.1016/j.indcrop.2019.111981 |
| [20] |
Zhang M, Jiao W, Chen Q, Fu M, Han C. 2024. Integrative phytohormone and transcriptome analyses reveal the inhibitory mechanism of ethylene on potato tuber sprouting at room temperature. Horticulturae 10(3):286 doi: 10.3390/horticulturae10030286 |
| [21] |
Alamar MC, Anastasiadi M, Lopez-Cobollo R, Bennett MH, Thompson AJ, et al. 2020. Transcriptome and phytohormone changes associated with ethylene-induced onion bulb dormancy. Postharvest Biology and Technology 168:111267 doi: 10.1016/j.postharvbio.2020.111267 |
| [22] |
Amoah RS, Terry LA. 2018. Effects of 1-methylcyclopropene treatment on diseases in sweetpotato. Journal of the Science of Food and Agriculture 98(12):4597−605 doi: 10.1002/jsfa.8988 |
| [23] |
Chomchalow S, Assi NM, Sargent SA, Brecht JK. 2002. Fruit maturity and timing of ethylene treatment affect storage performance of green tomatoes at chilling and nonchilling temperatures. HortTechnology 12(1):104−14 doi: 10.21273/HORTTECH.12.1.104 |
| [24] |
Cefola M, Amodio ML, Rinaldi R, Vanadia S, Colelli G. 2010. Exposure to 1-methylcyclopropene (1-MCP) delays the effects of ethylene on fresh-cut broccoli raab (Brassica rapa L.). Postharvest Biology and Technology 58(1):29−35 doi: 10.1016/j.postharvbio.2010.05.001 |
| [25] |
Nilsson T. 2005. Effects of ethylene and 1-MCP on ripening and senescence of European seedless cucumbers. Postharvest Biology and Technology 36(2):113−25 doi: 10.1016/j.postharvbio.2004.11.008 |
| [26] |
Massolo JF, Concellón A, Chaves AR, Vicente AR. 2011. 1-Methylcyclopropene (1-MCP) delays senescence, maintains quality and reduces browning of non-climacteric eggplant (Solanum melongena L. ) fruit. Postharvest Biology and Technology 59(1):10−15 doi: 10.1016/j.postharvbio.2010.08.007 |
| [27] |
Yoon H, No J, Kim W, Shin M. 2018. Textural character of sweet potato root of Korean cultivars in relation to chemical constituents and their properties. Food Science and Biotechnology 27:1627−37 doi: 10.1007/s10068-018-0429-7 |
| [28] |
Xu X, Wu S, Chen K, Zhang H, Zhou S, et al. 2023. Comprehensive evaluation of raw eating quality in 81 sweet potato (Ipomoea batatas (L.) Lam) varieties. Foods 12(2):261 doi: 10.3390/foods12020261 |
| [29] |
Dong W, Li L, Cao R, Xu S, Cheng L, et al. 2020. Changes in cell wall components and polysaccharide-degrading enzymes in relation to differences in texture during sweetpotato storage root growth. Journal of Plant Physiology 254:153282 doi: 10.1016/j.jplph.2020.153282 |
| [30] |
Foukaraki S. 2012. Storage of potatoes: effects of ethylene and 1-MCP on potato tuber quality and biochemistry. Thesis. Cranfield University, UK. pp. 152−60 |
| [31] |
Xie G, Feng Y, Chen Y, Zhang M. 2020. Effects of 1-methylcyclopropene (1-MCP) and ethylene on postharvest lignification of common beans (Phaseolus vulgaris L.). ACS Omega 5:8659−66 doi: 10.1021/acsomega.0c00151 |
| [32] |
Sisler EC, Serek M. 1997. Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiologia Plantarum 100(3):577−82 doi: 10.1111/j.1399-3054.1997.tb03063.x |
| [33] |
Lima P, Santos MS, Guimarães ME, Araújo NO, Krause MR, et al. 2021. Ethylene and its inhibitors affect the quality of processed sweet potatoes. Food Science and Technology 41(4):825−32 doi: 10.1590/fst.24720 |
| [34] |
Villordon A, Clark C, LaBonte D, Firon N. 2012. 1-Methylcyclopropene has a variable effect on adventitious root emergence from cuttings of two sweetpotato cultivars. HortScience 47(12):1764−67 doi: 10.21273/HORTSCI.47.12.1764 |
| [35] |
Pankomera P, Heyes JA, Lewthwaite SL, Roskruge N. 2016. Effects of ethylene and 1-methylcyclopropene on sweetpotato storage root quality. Acta Horticulturae 1118:163−70 doi: 10.17660/actahortic.2016.1118.24 |
| [36] |
Lima PCC, Santos MNS, Araújo FFd, Tello JPJ, Finger FL. 2019. Sprouting and metabolism of sweet potatoes roots cv. BRS Rubissol during storage. Brazilian Journal of Agricultural Sciences [Revista Brasileira de Ciências Agrárias] 14(3):1 doi: 10.5039/agraria.v14i3a6204 |
| [37] |
Benkeblia N, Alexopoulos A, Passam H. 2008. Physiological and biochemical regulation of dormancy and sprouting in potato tubers (Solanum tuberosum L.). Fruit, Vegetable and Cereal Science and Biotechnology 2:55−68 |
| [38] |
Picha DH. 1987. Carbohydrate changes in sweet potatoes during curing and storage. Journal of the American Society for Horticultural Science 112(1):89−92 doi: 10.21273/JASHS.112.1.89 |
| [39] |
Daniels-Lake BJ, Prange RK, Bishop SD, Hiltz K. 2008. 1-Methylcyclopropene counteracts fry color darkening attributable to carbon dioxide and ethylene interaction. HortScience 43(7):2112−14 doi: 10.21273/HORTSCI.43.7.2112 |
| [40] |
Buescher RW, Sistrunk WA, Brady PL. 1975. Effects of ethylene on metabolic and quality attributes in sweetpotato roots. Journal of Food Science 40(5):1018−20 doi: 10.1111/j.1365-2621.1975.tb02257.x |
| [41] |
Amoah RS. 2014. The effects of ethylene on sweetpotato storage. Thesis. Cranfield University, UK. pp. 161−210 |
| [42] |
Prange RK, Daniels-Lake BJ, Jeong JC, Binns M. 2005. Effects of ethylene and 1-methylcyclopropene on potato tuber sprout control and fry color. American Journal of Potato Research 82:123−28 doi: 10.1007/BF02853649 |
| [43] |
Zhao W, Langfelder P, Fuller T, Dong J, Li A, et al. 2010. Weighted gene coexpression network analysis: state of the art. Journal of Biopharmaceutical Statistics 20(2):281−300 doi: 10.1080/10543400903572753 |
| [44] |
Kou J, Zhao Z, Zhang Q, Wei C, Ference CM, et al. 2021. Comparative transcriptome analysis reveals the mechanism involving ethylene and cell wall modification related genes in Diospyros kaki fruit firmness during ripening. Genomics 113(2):552−63 doi: 10.1016/j.ygeno.2021.01.002 |
| [45] |
He S, Hao X, He S, Hao X, Zhang P, et al. 2021. Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in sweet potato. BMC Genomics 22:748 doi: 10.1186/s12864-021-08043-w |
| [46] |
Liu J, Osbourn A, Ma P. 2015. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular Plant 8:689−708 doi: 10.1016/j.molp.2015.03.012 |
| [47] |
Qin Z, Hou F, Li A, Dong S, Wang Q, et al. 2020. Transcriptome-wide identification of WRKY transcription factor and their expression profiles under salt stress in sweetpotato (Ipomoea batatas L.). Plant Biotechnology Reports 14:599−611 doi: 10.1007/s11816-020-00635-4 |
| [48] |
Guo J, Sun B, He H, Zhang Y, Tian H, et al. 2021. Current understanding of bHLH transcription factors in plant abiotic stress tolerance. International Journal of Molecular Sciences 22(9):4921 doi: 10.3390/ijms22094921 |
| [49] |
Foukaraki SG, Cools K, Terry LA. 2016. Differential effect of ethylene supplementation and inhibition on abscisic acid metabolism of potato (Solanum tuberosum L.) tubers during storage. Postharvest Biology and Technology 112:87−94 |
| [50] |
Shen YH, Lu BG, Feng L, Yang FY, Geng JJ, et al. 2017. Isolation of ripening-related genes from ethylene/1-MCP treated papaya through RNA-seq. BMC Genomics 18:671 doi: 10.1186/s12864-017-4072-0 |
| [51] |
Thongkum M, Imsabai W, Burns P, McAtee PA, Schaffer RJ, et al. 2018. The effect of 1-methylcyclopropene (1-MCP) on expression of ethylene receptor genes in durian pulp during ripening. Plant Physiology and Biochemistry 125:232−38 doi: 10.1016/j.plaphy.2018.02.004 |
| [52] |
Chen WL, Huang DJ, Liu PH, Wang HL, Su JC, et al. 2001. Purification and characterization of sucrose phosphate synthase from sweet potato tuberous roots. Botanical Bulletin of Academia Sinica 42:123−29 doi: 10.7016/BBAS.200104.0123 |
| [53] |
Zhang K, Wu Z, Tang D, Luo K, Lu H, et al. 2017. Comparative transcriptome analysis reveals critical function of sucrose metabolism related-enzymes in starch accumulation in the storage root of sweet potato. Frontiers in Plant Science 8:914 doi: 10.3389/fpls.2017.00914 |
| [54] |
Rahman FU, Zhou Y, Liang P, Zheng W, Wu Z, et al. 2024. The effect of 1-MCP on fruit ripening and glycometabolism in banana. Scientia Horticulturae 338:113824 doi: 10.1016/j.scienta.2024.113824 |
| [55] |
Tosetti R, Waters A, Chope GA, Cools K, Alamar MC, et al. 2021. New insights into the effects of ethylene on ABA catabolism, sweetening and dormancy in stored potato tubers. Postharvest Biology and Technology 173:111420 doi: 10.1016/j.postharvbio.2020.111420 |
| [56] |
Barros J, Dixon RA. 2020. Plant phenylalanine/tyrosine ammonia-lyases. Trends in Plant Science 25(1):66−79 doi: 10.1016/j.tplants.2019.09.011 |
| [57] |
Zhao D, Zhao L, Liu Y, Zhang A, Xiao S, et al. 2022. Metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway for the accumulation of anthocyanins and other flavonoids in sweetpotato root skin and leaf vein base. Journal of Agricultural and Food Chemistry 70(8):2574−88 doi: 10.1021/acs.jafc.1c05388 |
| [58] |
Gao H, Zhang Y, Duan Q, Ren Q, Deng L, et al. 2023. Widely targeted metabolomics analyses clarify the biosynthetic pathways responsible for flavonoids in Sweet Potato (Ipomoea batatas (L.) Lam.) Storage Roots. Agriculture 13(10):1955 doi: 10.3390/agriculture13101955 |
| [59] |
Yue L, Li Y, Zhong M, Chai X, Zhao P, et al. 2022. Benzoic acid, chlorine dioxide, and 1-methylcyclopropene induce flavonoid metabolic shifts in postharvest flowering chinese cabbage revealed by high-dimensional analytical data. International Journal of Molecular Sciences 23(11):6011 doi: 10.3390/ijms23116011 |
| [60] |
Song L, Wang J, Hang H, Wang C, Yu Z. 2022. 1-Methylcyclopropene retard the yellowing of postharvest pak choi (Brassica rapa subsp. Chinensis) by regulating pigments and transcription factors during storage at 20°C. Postharvest Biology and Technology 191:11196 doi: 10.1016/j.postharvbio.2022.111962 |