[1]

Upson JL, Zess EK, Białas A, Wu CH, Kamoun S, et al. 2018. The coming of age of EvoMPMI: evolutionary molecular plant–microbe interactions across multiple timescales. Current Opinion in Plant Biology 44:108−16

doi: 10.1016/j.pbi.2018.03.003
[2]

Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A, et al. 2019. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nature Communications 10:4135

doi: 10.1038/s41467-019-11974-4
[3]

Hassani MA, Durán P, Hacquard S. 2018. Microbial interactions within the plant holobiont. Microbiome 6:58

doi: 10.1186/s40168-018-0445-0
[4]

Zhu YG, Xiong C, Wei Z, Chen QL, Ma B, et al. 2022. Impacts of global change on the phyllosphere microbiome. New Phytologist 234:1977−86

doi: 10.1111/nph.17928
[5]

Fang C, Fernie AR, Luo J. 2019. Exploring the diversity of plant metabolism. Trends in Plant Science 24:83−98

doi: 10.1016/j.tplants.2018.09.006
[6]

Xie H, Chen Z, Feng X, Wang M, Luo Y, et al. 2022. L-theanine exuded from Camellia sinensis roots regulates element cycling in soil by shaping the rhizosphere microbiome assembly. Science of The Total Environment 837:155801

doi: 10.1016/j.scitotenv.2022.155801
[7]

van Dam NM, Bouwmeester HJ. 2016. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends in Plant Science 21:256−65

doi: 10.1016/j.tplants.2016.01.008
[8]

Vorholt JA. 2012. Microbial life in the phyllosphere. Nature Reviews Microbiology 10:828−40

doi: 10.1038/nrmicro2910
[9]

Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, et al. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences of the United States of America 106:16428−33

doi: 10.1073/pnas.0905240106
[10]

Rout ME. 2014. The plant microbiome. Advances in Botanical Research 69:279−309

doi: 10.1016/B978-0-12-417163-3.00011-1
[11]

Jacoby RP, Koprivova A, Kopriva S. 2021. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. Journal of Experimental Botany 72:57−69

doi: 10.1093/jxb/eraa424
[12]

Yu X, Xiao J, Chen S, Yu Y, Ma J, et al. 2020. Metabolite signatures of diverse Camellia sinensis tea populations. Nature Communications 11:5586

doi: 10.1038/s41467-020-19441-1
[13]

Shen J, Zou Z, Zhang X, Zhou L, Wang Y, et al. 2018. Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant (Camellia sinensis L.) cultivars. Horticulture Research 5:7

doi: 10.1038/s41438-017-0010-1
[14]

Xu P, Stirling E, Xie H, Li W, Lv Z, et al. 2023. Continental scale deciphering of microbiome networks untangles the phyllosphere homeostasis in tea plant. Journal of Advanced Research 44:13−22

doi: 10.1016/j.jare.2022.04.002
[15]

Xu P, Fan X, Mao Y, Cheng H, Xu A, et al. 2022. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. Journal of Advanced Research 39:49−60

doi: 10.1016/j.jare.2021.10.003
[16]

Mei X, Zhang K, Lin Y, Su H, Lin C, et al. 2022. Metabolic and transcriptomic profiling reveals etiolated mechanism in Huangyu tea (Camellia sinensis) leaves. International Journal of Molecular Sciences 23:15044

doi: 10.3390/ijms232315044
[17]

Zhang C, Wang M, Gao X, et al. 2020. Multi-omics research in albino tea plants: past, present, and future. Scientia Horticulturae 261:108943

doi: 10.1016/j.scienta.2019.108943
[18]

Wang Z, Peng H, Yue C, Li W, Tong Z, et al. 2022. Selection of core evaluation indices and construction of a comprehensive evaluation method for machine-harvested tea plant cultivars. Euphytica 218:162

doi: 10.1007/s10681-022-03112-x
[19]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20

doi: 10.1093/bioinformatics/btu170
[20]

Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant 13:1013−26

doi: 10.1016/j.molp.2020.04.010
[21]

Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil PA, et al. 2022. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Research 50:D785−D794

doi: 10.1093/nar/gkab776
[22]

Mirdita M, Steinegger M, Söding J. 2019. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35:2856−58

doi: 10.1093/bioinformatics/bty1057
[23]

Tu Q, Lin L, Cheng L, Deng Y, He Z, et al. 2019. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics 35:1040−48

doi: 10.1093/bioinformatics/bty741
[24]

Yu X, Zhou J, Song W, Xu M, He Q, et al. 2021. SCycDB: a curated functional gene database for metagenomic profiling of sulphur cycling pathways. Molecular Ecology Resources 21:924−40

doi: 10.1111/1755-0998.13306
[25]

Qian L, Yu X, Zhou J, Gu H, Ding J, et al. 2022. MCycDB: a curated database for comprehensively profiling methane cycling processes of environmental microbiomes. Molecular Ecology Resources 22:1803−23

doi: 10.1111/1755-0998.13589
[26]

Zeng J, Tu Q, Yu X, Qian L, Wang C, et al. 2022. PCycDB: a comprehensive and accurate database for fast analysis of phosphorus cycling genes. Microbiome 10:101

doi: 10.1186/s40168-022-01292-1
[27]

Jafari M, Ansari-Pour N. 2018. Why, when and how to adjust your P values? Cell Journal 20:604−07

doi: 10.22074/cellj.2019.5992
[28]

Xia EH, Tong W, Wu Q, Wei S, Zhao J, et al. 2020. Tea plant genomics: achievements, challenges and perspectives. Horticulture Research 7:7

doi: 10.1038/s41438-019-0225-4
[29]

Chaudhry V, Runge P, Sengupta P, Doehlemann G, Parker JE, et al. 2021. Shaping the leaf microbiota: plant-microbe-microbe interactions. Journal of Experimental Botany 72:36−56

doi: 10.1093/jxb/eraa417
[30]

Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, et al. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. The ISME Journal 6:1378−90

doi: 10.1038/ismej.2011.192
[31]

Wachowska U, Irzykowski W, Jędryczka M, Stasiulewicz-Paluch AD, Głowacka K. 2013. Biological control of winter wheat pathogens with the use of antagonistic Sphingomonas bacteria under greenhouse conditions. Biocontrol Science and Technology 23:1110−22

doi: 10.1080/09583157.2013.812185
[32]

Tan X, Xie H, Yu J, Wang Y, Xu J, et al. 2022. Host genetic determinants drive compartment-specific assembly of tea plant microbiomes. Plant Biotechnology Journal 20:2174−86

doi: 10.1111/pbi.13897
[33]

Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, et al. 2016. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications 7:12151

doi: 10.1038/ncomms12151
[34]

Sangiorgio D, Cellini A, Donati I, Ferrari E, Tanunchai B, et al. 2022. Taxonomical and functional composition of strawberry microbiome is genotype-dependent. Journal of Advanced Research 42:189−204

doi: 10.1016/j.jare.2022.02.009
[35]

Chen Y, Li S, Zhang Y, Li T, Ge H, et al. 2019. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields. Soil Biology and Biochemistry 129:191−200

doi: 10.1016/j.soilbio.2018.11.015
[36]

Berruto CA, Demirer GS. 2024. Engineering agricultural soil microbiomes and predicting plant phenotypes. Trends in Microbiology 32:858−73

doi: 10.1016/j.tim.2024.02.003
[37]

Arif I, Batool M, Schenk PM. 2020. Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends in Biotechnology 38:1385−96

doi: 10.1016/j.tibtech.2020.04.015
[38]

Wang X, Feng H, Chang Y, Ma C, Wang L, et al. 2020. Population sequencing enhances understanding of tea plant evolution. Nature Communications 11:4447

doi: 10.1038/s41467-020-18228-8
[39]

Lin S, Chen Z, Chen T, Deng W, Wan X, et al. 2023. Theanine metabolism and transport in tea plants (Camellia sinensis L.): advances and perspectives. Critical Reviews in Biotechnology 43:327−41

doi: 10.1080/07388551.2022.2036692
[40]

Zengler K, Zaramela LS. 2018. The social network of microorganisms—how auxotrophies shape complex communities. Nature Reviews Microbiology 16:383−90

doi: 10.1038/s41579-018-0004-5
[41]

Kim DR, Jeon CW, Cho G, Thomashow LS, Weller DM, et al. 2021. Glutamic acid reshapes the plant microbiota to protect plants against pathogens. Microbiome 9:244

doi: 10.1186/s40168-021-01186-8
[42]

Nie T, Zhang C, Huang A, Li P. 2018. Epigallocatechin gallate-mediated cell death is triggered by accumulation of reactive oxygen species induced via the cpx two-component system in Escherichia col. Frontiers in Microbiology 9:246

doi: 10.3389/fmicb.2018.00246
[43]

Choińska R, Dąbrowska K, Świsłocka R, Lewandowski W, Świergiel AH. 2021. Antimicrobial properties of mandelic acid, gallic acid and their derivatives. Mini Reviews in Medicinal Chemistry 21:2544−50

doi: 10.2174/1389557521666210105123834
[44]

Cernava T, Chen X, Krug L, Li H, Yang M, et al. 2019. The tea leaf microbiome shows specific responses to chemical pesticides and biocontrol applications. Science of The Total Environment 667:33−40

doi: 10.1016/j.scitotenv.2019.02.319
[45]

Narayan OP, Kumar P, Yadav B, Dua M, Johri AK. 2023. Sulfur nutrition and its role in plant growth and development. Plant Signaling & Behavior 18:2030082

doi: 10.1080/15592324.2022.2030082
[46]

Ruan J, Wu X, Ye Y, Härdter R. 1998. Effect of potassium, magnesium and sulphur applied in different forms of fertilisers on free amino acid content in leaves of tea (Camellia sinensis L). Journal of the Science of Food and Agriculture 76:389−96

doi: 10.1002/(SICI)1097-0010(199803)76:3<389::AID-JSFA963>3.0.CO;2-X
[47]

Kertesz MA, Mirleau P. 2004. The role of soil microbes in plant sulphur nutrition. Journal of Experimental Botany 55:1939−45

doi: 10.1093/jxb/erh176
[48]

Sperandio B, Polard P, Ehrlich DS, Renault P, Guédon E. 2005. Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403. Journal of Bacteriology 187:3762−78

doi: 10.1128/JB.187.11.3762-3778.2005
[49]

Kong D, Ye Z, Dai M, Ma B, Tan X. 2024. Light intensity modulates the functional composition of leaf metabolite groups and phyllosphere prokaryotic community in garden lettuce (Lactuca sativa L.) plants at the vegetative stage. International Journal of Molecular Sciences 25:1451

doi: 10.3390/ijms25031451
[50]

Liang W, Fernandes AP, Holmgren A, Li X, Zhong L. 2016. Bacterial thioredoxin and thioredoxin reductase as mediators for epigallocatechin 3-gallate-induced antimicrobial action. The FEBS Journal 283:446−58

doi: 10.1111/febs.13587
[51]

Kieft K, Breister AM, Huss P, Linz AM, Zanetakos E, et al. 2021. Virus-associated organosulfur metabolism in human and environmental systems. Cell Reports 36:109471

doi: 10.1016/j.celrep.2021.109471
[52]

Lidbury I, Kimberley G, Scanlan DJ, Colin Murrell J, Chen Y. 2015. Comparative genomics and mutagenesis analyses of choline metabolism in the marine Roseobacter clade. Environmental Microbiology 17:5048−62

doi: 10.1111/1462-2920.12943
[53]

Radlinski LC, Brunton J, Steele S, Taft-Benz S, Kawula TH. 2018. Defining the metabolic pathways and host-derived carbon substrates required for Francisella tularensis intracellular growth. mBio 9:10.1128/mbio.01471-18

doi: 10.1128/mbio.01471-18
[54]

Martiny JBH, Jones SE, Lennon JT, Martiny AC. 2015. Microbiomes in light of traits: a phylogenetic perspective. Science 350:aac9323

doi: 10.1126/science.aac9323
[55]

Konstantinidis KT, Tiedje JM. 2004. Trends between gene content and genome size in prokaryotic species with larger genomes. Proceedings of the National Academy of Sciences of the United States of America 101:3160−65

doi: 10.1073/pnas.0308653100