| [1] |
Eiserhardt WL, Couvreur TLP, Baker WJ. 2017. Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest biome. New Phytologist 214:1408−22 doi: 10.1111/nph.14516 |
| [2] |
Hooker JE, Black KE. 1995. Arbuscular mycorrhizal fungi as components of sustainable soil-plant systems. Critical Reviews in Biotechnology 15:201−12 doi: 10.3109/07388559509147408 |
| [3] |
Gattinger A, Palojärvi A, Schloter M. 2008. Soil microbial communities and related functions. In Perspectives for Agroecosystem Management, eds. Schröder P, Pfadenhauer J, Munch JC. Amsterdam: Elsevier. pp. 279−92. doi: 10.1016/b978-044451905-4.50011-8 |
| [4] |
Fall AF, Nakabonge G, Ssekandi J, Founoune-Mboup H, Apori SO, et al. 2022. Roles of arbuscular mycorrhizal fungi on soil fertility: contribution in the improvement of physical, chemical, and biological properties of the soil. Frontiers in Fungal Biology 3:723892 doi: 10.3389/ffunb.2022.723892 |
| [5] |
de Carvalho AMX, de Castro Tavares R, Cardoso IM, Kuyper TW. 2010. Mycorrhizal associations in agroforestry systems. In Soil Biology and Agriculture in the Tropics, ed. Dion P. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 185−208. doi: 10.1007/978-3-642-05076-3_9 |
| [6] |
Stürmer SL, Bever JD, Morton JB. 2018. Biogeography of arbuscular mycorrhizal fungi (glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza 28:587−603 doi: 10.1007/s00572-018-0864-6 |
| [7] |
Wang J, Wang GG, Zhang B, Yuan Z, Fu Z, et al. 2019. Arbuscular mycorrhizal fungi associated with tree species in a planted forest of Eastern China. Forests 10:424 doi: 10.3390/f10050424 |
| [8] |
Zhang M, Shi Z, Xu X, Wang X. 2022. Arbuscular mycorrhizal fungi associated with roots reveal high diversity levels at different elevations in tropical montane rainforests. Diversity 14:587 doi: 10.3390/d14080587 |
| [9] |
Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal 4:337−45 doi: 10.1038/ismej.2009.122 |
| [10] |
Prieto-Benavides OO, Blezaca-Pinargote CE, Mora-Silva WF, Garcés-Fiallos FR, Sabando-Ávila FA, et al. 2012. Identificación de hongos micorrízicos arbusculares en sistemas agroforestales con cacao en el trópico húmedo ecuatoriano [Identification of arbuscular mycorrhizal fungi in agroforestry systems with cacao in the Ecuadorian humid tropics]. Agronomía Mesoamericana 23:233 doi: 10.15517/am.v23i2.6482 |
| [11] |
Jiang S, Hu X, Kang Y, Xie C, An X, et al. 2020. Arbuscular mycorrhizal fungal communities in the rhizospheric soil of Litchi and mango orchards as affected by geographic distance, soil properties and manure input. Applied Soil Ecology 152:103593 doi: 10.1016/j.apsoil.2020.103593 |
| [12] |
Cotton TA. 2018. Arbuscular mycorrhizal fungal communities and global change: an uncertain future. FEMS Microbiology Ecology 94:fiy179 doi: 10.1093/femsec/fiy179 |
| [13] |
Urgiles N, Loján P, Aguirre N, Blaschke H, Günter S, et al. 2009. Application of mycorrhizal roots improves growth of tropical tree seedlings in the nursery: a step towards reforestation with native species in the Andes of Ecuador. New Forests 38:229−39 doi: 10.1007/s11056-009-9143-x |
| [14] |
Lugo MA, Menoyo E. 2019. Southern Highlands: fungal endosymbiotic associations. Mycorrhizal Fungi in South America. Cham: Springer International Publishing: 217−55 https://doi.org/10.1007/978-3-030-15228-4_12 |
| [15] |
Liu X, Feng Z, Zhao Z, Zhu H, Yao Q. 2020. Acidic soil inhibits the functionality of arbuscular mycorrhizal fungi by reducing arbuscule formation in tomato roots. Soil Science and Plant Nutrition 66:275−84 doi: 10.1080/00380768.2020.1721320 |
| [16] |
Cardoso EJBN, Nogueira MA, Zangaro W. 2017. Importance of mycorrhizae in tropical soils. In Diversity and Benefits of Microorganisms from the Tropics, eds. de Azevedo JL, Quecine MC. Cham:Springer. pp. 245–267. doi: 10.1007/978-3-319-55804-2_11 |
| [17] |
Smith SE, Read D. 2008. Mycorrhizal Symbiosis. 3rd Edition. New York: Academic Press. doi: 10.1016/B978-0-12-370526-6.X5001-6 |
| [18] |
Marín C, Aguilera P, Oehl F, Godoy R. 2017. Factors affecting arbuscular mycorrhizal fungi of Chilean temperate rainforests. Journal of Soil Science and Plant Nutrition 17:966−84 doi: 10.4067/s0718-95162017000400010 |
| [19] |
Bueno CG, Gerz M, Moora M, Leon D, Gomez-Garcia D, et al. 2021. Distribution of plant mycorrhizal traits along an elevational gradient does not fully mirror the latitudinal gradient. Mycorrhiza 31:149−59 doi: 10.1007/s00572-020-01012-3 |
| [20] |
Smith SE, Smith FA. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62:227−50 doi: 10.1146/annurev-arplant-042110-103846 |
| [21] |
Zhao F, Feng X, Guo Y, Ren C, Wang J, et al. 2020. Elevation gradients affect the differences of arbuscular mycorrhizal fungi diversity between root and rhizosphere soil. Agricultural and Forest Meteorology 284:107894 doi: 10.1016/j.agrformet.2019.107894 |
| [22] |
Llerena SA, Salinas N, Oliveira OL, Jadán-Guerrero M, et al. 2018. Distribution of the genus Cedrela in Ecuador. RUDN Journal of Ecology and Life Safety 26:125−33 doi: 10.22363/2313-2310-2018-26-1-125-133 |
| [23] |
The International Collection of (Vesicular) Arbuscular Mycorrhizal Fungi (INVAM). n.d. Species descriptions. https://invam.ku.edu/species-descriptions |
| [24] |
Trouvelot A, Kough JL, Gianinazzi-Pearson V. 1986. Estimation of VA mycorrhizal infection levels. Research for methods having a functional significance. Physiological and Genetical Aspects of Mycorrhizae: Aspects Physiologiques et Genetiques des Mycorhizes, Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, France, 1−5 July 1985. Paris, France: Institut National de le Recherche Agronomique. |
| [25] |
Singh YV. 2024. Standard Methods for Soil, Water and Plant Analysis. London: CRC Press. doi: 10.1201/9781003534303 |
| [26] |
Clark RB, Zeto SK. 2000. Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition 23:867−902 doi: 10.1080/01904160009382068 |
| [27] |
R Core Team. 1999. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria |
| [28] |
Geml J. 2017. Altitudinal gradients in mycorrhizal symbioses. In Biogeography of Mycorrhizal Symbiosis, ed. Tedersoo L. Cham: Springer. pp. 107−23. doi: 10.1007/978-3-319-56363-3_5 |
| [29] |
Shi Z, Wang F, Zhang K, Chen Y. 2014. Diversity and distribution of arbuscular mycorrhizal fungi along altitudinal gradients in Mount Taibai of the Qinling Mountains. Canadian Journal of Microbiology 60:811−18 doi: 10.1139/cjm-2014-0416 |
| [30] |
Yang W, Zheng Y, Gao C, Duan JC, Wang SP, et al. 2016. Arbuscular mycorrhizal fungal community composition affected by original elevation rather than translocation along an altitudinal gradient on the Qinghai-Tibet Plateau. Scientific Reports 6:36606 doi: 10.1038/srep36606 |
| [31] |
Shen C, Ni Y, Liang W, Wang J, Chu H. 2015. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Frontiers in Microbiology 6:582 doi: 10.3389/fmicb.2015.00582 |
| [32] |
Winagraski E, Kaschuk G, Monteiro PHR, Auer CG, Higa AR. 2019. Diversity of arbuscular mycorrhizal fungi in forest ecosystems of Brazil: a review. Cerne 25:25−35 doi: 10.1590/01047760201925012592 |
| [33] |
Deng M, Hu S, Guo L, Jiang L, Huang Y, et al. 2023. Tree mycorrhizal association types control biodiversity-productivity relationship in a subtropical forest. Science Advances 9:eadd4468 doi: 10.1126/sciadv.add4468 |
| [34] |
Soethe N, Lehmann J, Engels C. 2008. Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology 24:397−406 doi: 10.1017/s026646740800504x |
| [35] |
Pereira S, Leal IR, Tabarelli M, Santos MG. 2020. Intense mycorrhizal root colonization in a human-modified landscape of the Caatinga dry forest. Forest Ecology and Management 462:117970 doi: 10.1016/j.foreco.2020.117970 |
| [36] |
Ma X, Xu X, Geng Q, Luo Y, Ju C, et al. 2023. Global arbuscular mycorrhizal fungal diversity and abundance decreases with soil available phosphorus. Global Ecology and Biogeography 32:1423−34 doi: 10.1111/geb.13704 |
| [37] |
Cloutier ML, Murrell E, Barbercheck M, Kaye J, Finney D, et al. 2020. Fungal community shifts in soils with varied cover crop treatments and edaphic properties. Scientific Reports 10:6198 doi: 10.1038/s41598-020-63173-7 |
| [38] |
Song J, Chen L, Chen F, Ye J. 2019. Edaphic and host plant factors are linked to the composition of arbuscular mycorrhizal fungal communities in the root zone of endangered Ulmus chenmoui Cheng in China. Ecology and Evolution 9:8900−10 doi: 10.1002/ece3.5446 |
| [39] |
Olsson PA, Hammer EC, Pallon J, van Aarle IM, Wallander H. 2011. Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Biology 115:643−48 doi: 10.1016/j.funbio.2011.03.008 |
| [40] |
Wang Z, Hartemink AE, Zhang Y, Zhang H, Ding M. 2016. Major elements in soils along a 2.8–km altitudinal gradient on the Tibetan Plateau, China. Pedosphere 26:895−903 doi: 10.1016/S1002-0160(15)60094-7 |
| [41] |
Kumar N, Kumar A, Jeena N, Singh R, Singh H. 2020. Factors influencing soil ecosystem and agricultural productivity at higher altitudes. In Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability, eds. Goel R, Soni R, Suyal DC. Singapore: Springer. pp. 55–70. doi: 10.1007/978-981-15-1902-4_4 |
| [42] |
Rożek K, Rola K, Błaszkowski J, Leski T, Zubek S. 2020. How do monocultures of fourteen forest tree species affect arbuscular mycorrhizal fungi abundance and species richness and composition in soil? Forest Ecology and Management 465:118091 doi: 10.1016/j.foreco.2020.118091 |