[1]

Zhang Z, Yang T, Liu Y, Wu S, Sun H, et al. 2024. Haplotype-resolved genome assembly and resequencing provide insights into the origin and breeding of modern rose. Nature Plants 10:1659−71

doi: 10.1038/s41477-024-01820-x
[2]

Cheng C, Gao J, Ma N. 2018. Investigation of petal senescence by TRV-mediated virus-induced gene silencing in rose. Plant Senescence, ed. Guo Y. New York, NY: Humana Press. Vol 1744. pp. 49−63

[3]

Wang Y, Wang Y, Zhou LJ, Peng J, Chen C, et al. 2023. CmNAC25 targets CmMYB6 to positively regulate anthocyanin biosynthesis during the post-flowering stage in chrysanthemum. BMC Biology 21:211

doi: 10.1186/s12915-023-01719-7
[4]

Gao Y, Liu C, Li X, Xu H, Liang Y, et al. 2016. Transcriptome profiling of petal abscission zone and functional analysis of an Aux/IAA family gene RhIAA16 involved in petal shedding in rose. Frontiers in Plant Science 7:1375

doi: 10.3389/fpls.2016.01375
[5]

Patra S, Makhal PN, Jaryal S, More N, Kaki VR. 2022. Anthocyanins: plant-based flavonoid pigments with diverse biological activities. International Journal of Plant Based Pharmaceuticals 2:118−27

doi: 10.62313/ijpbp.2022.22
[6]

Saigo T, Wang T, Watanabe M, Tohge T. 2020. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Current Opinion in Plant Biology 55:93−99

doi: 10.1016/j.pbi.2020.04.001
[7]

Sunil L, Shetty NP. 2022. Biosynthesis and regulation of anthocyanin pathway genes. Applied Microbiology and Biotechnology 106:1783−98

doi: 10.1007/s00253-022-11835-z
[8]

Koes RE, Quattrocchio F, Mol JNM. 1994. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16:123−32

doi: 10.1002/bies.950160209
[9]

Yang L, Zhang S, Chu D, Wang X. 2024. Exploring the evolution of CHS gene family in plants. Frontiers in Genetics 15:1368358

doi: 10.3389/fgene.2024.1368358
[10]

Sun Y, Zheng Y, Wang W, Yao H, Ali Z, et al. 2025. VvFHY3 links auxin and endoplasmic reticulum stress to regulate grape anthocyanin biosynthesis at high temperatures. The Plant Cell 37:koae303

doi: 10.1093/plcell/koae303
[11]

Ma N, Ma C, Liu Y, Shahid MO, Wang C, et al. 2018. Petal senescence: a hormone view. Journal of Experimental Botany 69:719−32

doi: 10.1093/jxb/ery009
[12]

Liang Y, Jiang C, Liu Y, Gao Y, Lu J, et al. 2020. Auxin regulates sucrose transport to repress petal abscission in rose (Rosa hybrida). The Plant Cell 32:3485−99

doi: 10.1105/tpc.19.00695
[13]

Basu MM, González-Carranza ZH, Azam-Ali S, Tang S, Shahid AA, et al. 2013. The manipulation of auxin in the abscission zone cells of Arabidopsis flowers reveals that indoleacetic acid signaling is a prerequisite for organ shedding. Plant Physiology 162:96−106

doi: 10.1104/pp.113.216234
[14]

Cucinotta M, Cavalleri A, Chandler JW, Colombo L. 2020. Auxin and flower development: a blossoming field. Cold Spring Harbor Perspectives in Biology 13:a039974

doi: 10.1101/cshperspect.a039974
[15]

Evans ML, Cleland RE. 1985. The action of auxin on plant cell elongation. Critical Reviews in Plant Sciences 2:317−65

doi: 10.1080/07352688509382200
[16]

Zhang Q, Gong M, Xu X, Li H, Deng W. 2022. Roles of auxin in the growth, development, and stress tolerance of horticultural plants. Cells 11:2761

doi: 10.3390/cells11172761
[17]

Olatunji D, Geelen D, Verstraeten I. 2017. Control of endogenous auxin levels in plant root development. International Journal of Molecular Sciences 18:2587

doi: 10.3390/ijms18122587
[18]

Saini S, Sharma I, Kaur N, Pati PK. 2013. Auxin: a master regulator in plant root development. Plant Cell Reports 32:741−57

doi: 10.1007/s00299-013-1430-5
[19]

Chen H, Song Z, Wang L, Lai X, Chen W, et al. 2023. Auxin-responsive protein MaIAA17-like modulates fruit ripening and ripening disorders induced by cold stress in 'Fenjiao' banana. International Journal of Biological Macromolecules 247:125750

doi: 10.1016/j.ijbiomac.2023.125750
[20]

Chen X, Liu Y, Zhang X, Zheng B, Han Y, et al. 2023. PpARF6 acts as an integrator of auxin and ethylene signaling to promote fruit ripening in peach. Horticulture Research 10:uhad158

doi: 10.1093/hr/uhad158
[21]

Yi S, Mao J, Zhang X, Li X, Zhang Z, et al. 2022. FveARF2 negatively regulates fruit ripening and quality in strawberry. Frontiers in Plant Science 13:1023739

doi: 10.3389/fpls.2022.1023739
[22]

Clayton-Cuch D, Yu L, Shirley N, Bradley D, Bulone V, et al. 2021. Auxin treatment enhances anthocyanin production in the non-climacteric sweet cherry (Prunus avium L.). International Journal of Molecular Sciences 22:10760

doi: 10.3390/ijms221910760
[23]

Wang Y, Wang N, Xu H, Jiang S, Fang H, et al. 2018. Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple. Horticulture Research 5:59

doi: 10.1038/s41438-018-0068-4
[24]

Su Z, Wang X, Xuan X, Sheng Z, Jia H, et al. 2021. Characterization and action mechanism analysis of VvmiR156b/c/d-VvSPL9 module responding to multiple-hormone signals in the modulation of grape berry color formation. Foods 10:896

doi: 10.3390/foods10040896
[25]

Liu N. 2019. Effects of IAA and ABA on the immature peach fruit development process. Horticultural Plant Journal 5:145−54

doi: 10.1016/j.hpj.2019.01.005
[26]

Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, et al. 2005. Characterization of an arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell 17:616−27

doi: 10.1105/tpc.104.026690
[27]

Li SB, Xie ZZ, Hu CG, Zhang JZ. 2016. A review of auxin response factors (ARFs) in plants. Frontiers in Plant Science 7:47

doi: 10.3389/fpls.2016.00047
[28]

Lewis DR, Ramirez MV, Miller ND, Vallabhaneni P, Ray WK, et al. 2011. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiology 156:144−64

doi: 10.1104/pp.111.172502
[29]

Ji XH, Wang YT, Zhang R, Wu SJ, An MM, et al. 2015. Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell, Tissue and Organ Culture (PCTOC) 120:325−37

doi: 10.1007/s11240-014-0609-y
[30]

Ma N, Cai L, Lu W, Tan H, Gao J. 2005. Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes. Science in China Series C: Life Sciences 48:434−44

doi: 10.1360/062004-37
[31]

Bachan S, Dinesh-Kumar SP. 2012. Tobacco rattle virus (TRV)-based virus-induced gene silencing. In Antiviral Resistance in Plants, eds Watson J, Wang MB. Totowa, NJ: Humana Press. Vol 894. pp. 83−92 doi: 10.1007/978-1-61779-882-5_6

[32]

Liu X, Zhou X, Li D, Hong B, Gao J, et al. 2023. Rose WRKY13 promotes disease protection to Botrytis by enhancing cytokinin content and reducing abscisic acid signaling. Plant Physiology 191:679−93

doi: 10.1093/plphys/kiac495
[33]

Wu L, Ma N, Jia Y, Zhang Y, Feng M, et al. 2017. An ethylene-induced regulatory module delays flower senescence by regulating cytokinin content. Plant Physiology 173:853−62

doi: 10.1104/pp.16.01064
[34]

Khazaei KM, Jafari SM, Ghorbani M, Kakhki AH, Sarfarazi M. 2016. Optimization of anthocyanin extraction from saffron petals with response surface methodology. Food Analytical Methods 9:1993−2001

doi: 10.1007/s12161-015-0375-4
[35]

Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, et al. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13

doi: 10.1186/1746-4811-1-13
[36]

Jing W, Gong F, Liu G, Deng Y, Liu J, et al. 2023. Petal size is controlled by the MYB73/TPL/HDA19-miR159-CKX6 module regulating cytokinin catabolism in Rosa hybrida. Nature Communications 14:7106

doi: 10.1038/s41467-023-42914-y
[37]

Koyama R, Roberto SR, de Souza RT, Borges WFS, Anderson M, et al. 2018. Exogenous abscisic acid promotes anthocyanin biosynthesis and increased expression of flavonoid synthesis genes in vitis vinifera × Vitis labrusca table grapes in a subtropical region. Frontiers in Plant Science 9:323

doi: 10.3389/fpls.2018.00323
[38]

Wang Y, Sun J, Wang N, Xu H, Qu C, et al. 2018. MdMYBL2 helps regulate cytokinin-induced anthocyanin biosynthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana) callus. Functional Plant Biology 46:187−96

doi: 10.1071/FP17216
[39]

He G, Zhang R, Jiang S, Wang H, Ming F. 2023. The MYB transcription factor RcMYB1 plays a central role in rose anthocyanin biosynthesis. Horticulture Researchs 10:uhad080

doi: 10.1093/hr/uhad080
[40]

Huang L, Lin B, Hao P, Yi K, Li X, et al. 2024. Multi-omics analysis reveals that anthocyanin degradation and phytohormone changes regulate red color fading in rapeseed (Brassica napus L.) petals. International Journal of Molecular Sciences 25:2577

doi: 10.3390/ijms25052577
[41]

Liu J, Wang Y, Zhang M, Wang Y, Deng X, et al. 2022. Color fading in lotus (Nelumbo nucifera) petals is manipulated both by anthocyanin biosynthesis reduction and active degradation. Plant Physiology and Biochemistry 179:100−07

doi: 10.1016/j.plaphy.2022.03.021
[42]

Liu P. 2024. Fading beauty: the protein degradation mechanism behind rose petal senescence. The Plant Cell 36:1578−79

doi: 10.1093/plcell/koae069
[43]

Gan S, Amasino RM. 1995. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986−88

doi: 10.1126/science.270.5244.1986
[44]

Liscum E, Reed JW. 2002. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Molecular Biology 49:387−400

doi: 10.1023/A:1015255030047
[45]

Guilfoyle T. 2007. Plant biology: sticking with auxin. Nature 446:621−22

doi: 10.1038/446621a
[46]

Chen C, Hussain N, Ma Y, Zuo L, Jiang Y, et al. 2023. The ARF2-MYB6 module mediates auxin-regulated petal expansion in rose. Journal of Experimental Botany 74:4489−502

doi: 10.1093/jxb/erad173
[47]

Wang J, Wang X, Ma B, Leng P, Wu J, et al. 2025. SoNAC72-SoMYB44/SobHLH130 module contributes to flower color fading via regulating anthocyanin biosynthesis by directly binding to the SoUFGT1 promoter in lilac (Syringa oblata). Horticulture Research 12:uhae326

doi: 10.1093/hr/uhae326
[48]

Li P, Chen X, Sun F, Dong H. 2017. Tobacco TTG2 and ARF8 function concomitantly to control flower colouring by regulating anthocyanin synthesis genes. Plant Biology 19:525−32

doi: 10.1111/plb.12560
[49]

Ma C, Yuan S, Xie B, Li Q, Wang Q, et al. 2022. IAA plays an important role in alkaline stress tolerance by modulating root development and ROS detoxifying systems in rice plants. International Journal of Molecular Sciences 23:14817

doi: 10.3390/ijms232314817
[50]

Mnafgui W, Hajlaoui H, Rizzo V, Muratore G, Elleuch A. 2022. Priming with EDTA, IAA and Fe alleviates Pb toxicity in Trigonella Foneum graecum L. growth: phytochemicals and secondary metabolites. Journal of Biotechnology 356:42−50

doi: 10.1016/j.jbiotec.2022.07.006
[51]

Wang C, Zhang P, He Y, Huang F, Wang X, et al. 2023. Exogenous spraying of IAA improved the efficiency of microspore embryogenesis in Wucai (Brassica campestris L.) by affecting the balance of endogenous hormones, energy metabolism, and cell wall degradation. BMC Genomics 24:380

doi: 10.1186/s12864-023-09483-2