[1]

Née G, Xiang Y, Soppe WJJ. 2017. The release of dormancy, a wake-up call for seeds to germinate. Current Opinion in Plant Biology 35:8−14

doi: 10.1016/j.pbi.2016.09.002
[2]

Sato H, Köhler C. 2022. Genomic imprinting regulates establishment and release of seed dormancy. Current Opinion in Plant Biology 69:102264

doi: 10.1016/j.pbi.2022.102264
[3]

Sajeev N, Koornneef M, Bentsink L. 2024. A commitment for life: decades of unraveling the molecular mechanisms behind seed dormancy and germination. The Plant Cell 36:1358−76

doi: 10.1093/plcell/koad328
[4]

Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJJ. 2012. Molecular mechanisms of seed dormancy. Plant, Cell & Environment 35:1769−86

doi: 10.1111/j.1365-3040.2012.02542.x
[5]

Liu X, Zhang H, Zhao Y, Feng Z, Li Q, et al. 2013. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 110:15485−90

doi: 10.1073/pnas.1304651110
[6]

Iwasaki M, Penfield S, Lopez-Molina L. 2022. Parental and environmental control of seed dormancy in Arabidopsis thaliana. Annual Review of Plant Biology 73:355−78

doi: 10.1146/annurev-arplant-102820-090750
[7]

Carrillo-Barral N, del Carmen Rodríguez-Gacio M, Matilla AJ. 2020. Delay of germination-1 (DOG1): a key to understanding seed dormancy. Plants 9:480

doi: 10.3390/plants9040480
[8]

Tognacca RS, Botto JF. 2021. Post-transcriptional regulation of seed dormancy and germination: current understanding and future directions. Plant Communications 2:100169

doi: 10.1016/j.xplc.2021.100169
[9]

Nakabayashi K, Bartsch M, Ding J, Soppe WJJ. 2015. Seed dormancy in Arabidopsis requires self-binding ability of DOG1 protein and the presence of multiple isoforms generated by alternative splicing. PLoS Genetics 11:e1005737

doi: 10.1371/journal.pgen.1005737
[10]

Nonogaki H. 2017. Seed biology updates – highlights and new discoveries in seed dormancy and germination research. Frontiers in Plant Science 8:524

doi: 10.3389/fpls.2017.00524
[11]

Nakabayashi K, Bartsch M, Xiang Y, Miatton E, Pellengahr S, et al. 2012. The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds. The Plant Cell 24:2826−38

doi: 10.1105/tpc.112.100214
[12]

Nonogaki H. 2019. Seed germination and dormancy: the classic story, new puzzles, and evolution. Journal of Integrative Plant Biology 61:541−63

doi: 10.1111/jipb.12762
[13]

Huo H, Wei S, Bradford KJ. 2016. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proceedings of the National Academy of Sciences of the United States of America 113:E2199−E2206

doi: 10.1073/pnas.1600558113
[14]

Sall K, Dekkers BJW, Nonogaki M, Katsuragawa Y, Koyari R, et al. 2019. DELAY OF GERMINATION 1-LIKE 4 acts as an inducer of seed reserve accumulation. The Plant Journal 100:7−19

doi: 10.1111/tpj.14485
[15]

Li X, Chen T, Li Y, Wang Z, Cao H, et al. 2019. ETR1/RDO3 regulates seed dormancy by relieving the inhibitory effect of the ERF12-TPL complex on DELAY OF GERMINATION1 expression. The Plant Cell 31:832−47

doi: 10.1105/tpc.18.00449
[16]

Buijs G, Kodde J, Groot SPC, Bentsink L. 2018. Seed dormancy release accelerated by elevated partial pressure of oxygen is associated with DOG loci. Journal of Experimental Botany 69:3601−08

doi: 10.1093/jxb/ery156
[17]

Ye N, Zhu G, Liu Y, Zhang A, Li Y, et al. 2012. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. Journal of Experimental Botany 63:1809−22

doi: 10.1093/jxb/err336
[18]

Leymarie J, Vitkauskaité G, Hoang HH, Gendreau E, Chazoule V, et al. 2012. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant and Cell Physiology 53:96−106

doi: 10.1093/pcp/pcr129
[19]

Ashikawa I, Abe F, Nakamura S. 2013. DOG1-like genes in cereals: investigation of their function by means of ectopic expression in Arabidopsis. Plant Science 208:1−9

doi: 10.1016/j.plantsci.2013.03.011
[20]

Deng G, Sun H, Hu Y, Yang Y, Li P, et al. 2023. A transcription factor WRKY36 interacts with AFP2 to break primary seed dormancy by progressively silencing DOG1 in Arabidopsis. New Phytologist 238:688−704

doi: 10.1111/nph.18750
[21]

Bryant FM, Hughes D, Hassani-Pak K, Eastmond PJ. 2019. Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR67 transactivates DELAY OF GERMINATION1 to establish primary seed dormancy in Arabidopsis. The Plant Cell 31:1276−88

doi: 10.1105/tpc.18.00892
[22]

Dekkers BJW, Bentsink L. 2015. Regulation of seed dormancy by abscisic acid and DELAY OF GERMINATION 1. Seed Science Research 25:82−98

doi: 10.1017/s0960258514000415
[23]

Teng S, Rognoni S, Bentsink L, Smeekens S. 2008. The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABA-mediated sugar signalling pathway, and enhances sugar sensitivity by stimulating ABI4 expression. The Plant Journal 55:372−81

doi: 10.1111/j.1365-313X.2008.03515.x
[24]

Dekkers BJW, He H, Hanson J, Willems LAJ, Jamar DCL, et al. 2016. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. The Plant Journal 85:451−65

doi: 10.1111/tpj.13118
[25]

Zhao M, Yang S, Liu X, Wu K. 2015. Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes. Frontiers in Plant Science 6:159

doi: 10.3389/fpls.2015.00159
[26]

Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, et al. 2011. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. The Plant Cell 23:2568−80

doi: 10.1105/tpc.111.087643
[27]

Nishiyama E, Nonogaki M, Yamazaki S, Nonogaki H, Ohshima K. 2021. Ancient and recent gene duplications as evolutionary drivers of the seed maturation regulators DELAY OF GERMINATION1 family genes. New Phytologist 230:889−901

doi: 10.1111/nph.17201
[28]

Zhang R, Wang X, Shi X, Shao L, Xu T, et al. 2021. Chilling requirement validation and physiological and molecular responses of the bud endodormancy release in Paeonia lactiflora 'meiju'. International Journal of Molecular Sciences 22:8382

doi: 10.3390/ijms22168382
[29]

Shen M, Tang Z, Teixeira da Silva JA, Yu X. 2015. Induction and proliferation of axillary shoots from in vitro culture of Paeonia lactiflora Pall. mature zygotic embryos. New Zealand Journal of Crop and Horticultural Science 43:42−52

doi: 10.1080/01140671.2014.944548
[30]

Fei R, Guan S, Duan S, Ge J, Sun T, et al. 2023. Elucidating biological functions of 9-cis-epoxycarotenoid dioxygenase genes involved in seed dormancy in Paeonia lactiflora. Plants 12:710

doi: 10.3390/plants12040710
[31]

Zhang K, Yao L, Zhang Y, Baskin JM, Baskin CC, et al. 2019. A review of the seed biology of Paeonia species (Paeoniaceae), with particular reference to dormancy and germination. Planta 249:291−303

doi: 10.1007/s00425-018-3017-4
[32]

Ma Y, Cui J, Lu X, Zhang L, Chen Z, et al. 2017. Transcriptome analysis of two different developmental stages of Paeonia lactiflora seeds. International Journal of Genomics 2017:8027626

doi: 10.1155/2017/8027626
[33]

Zhao D, Tao J, Han C, Ge J. 2012. An actin gene as the internal control for gene expression analysis in herbaceous peony (Paeonia lactiflora Pall.). African Journal of Agricultural Research 7:2153−59

doi: 10.5897/AJAR11.1613
[34]

Duan S, Guan S, Fei R, Sun T, Kang X, et al. 2024. Unraveling the role of PlARF2 in regulating deed formancy in Paeonia lactiflora. Planta 259:133

doi: 10.1007/s00425-024-04411-4
[35]

Duan S, Xin R, Guan S, Li X, Fei R, et al. 2022. Optimization of callus induction and proliferation of Paeonia lactiflora Pall. and Agrobacterium-mediated genetic transformation. Frontiers in Plant Science 13:996690

doi: 10.3389/fpls.2022.996690
[36]

Ashikawa I, Mori M, Nakamura S, Abe F. 2014. A transgenic approach to controlling wheat seed dormancy level by using Triticeae DOG1-like genes. Transgenic Research 23:621−29

doi: 10.1007/s11248-014-9800-5
[37]

Bentsink L, Jowett J, Hanhart CJ, Koornneef M. 2006. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103:17042−47

doi: 10.1073/pnas.0607877103
[38]

Yang Y, Zheng C, Chandrasekaran U, Yu L, Liu C, et al. 2020. Identification and bioinformatic analysis of the GmDOG1-like family in soybean and investigation of their expression in response to gibberellic acid and abscisic acid. Plants 9:937

doi: 10.3390/plants9080937
[39]

Zhu H, Xie W, Xu D, Miki D, Tang K, et al. 2018. DNA demethylase ROS1 negatively regulates the imprinting of DOGL4 and seed dormancy in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 115:E9962−E9970

doi: 10.1073/pnas.1812847115
[40]

Vollmeister E, Phokas A, Meyberg R, Böhm CV, Peter M, et al. 2024. A DELAY OF GERMINATION 1 (DOG1)-like protein regulates spore germination in the moss Physcomitrium patens. The Plant Journal 117:909−23

doi: 10.1111/tpj.16537
[41]

Nishimura N, Tsuchiya W, Moresco JJ, Hayashi Y, Satoh K, et al. 2018. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nature Communications 9:2132

doi: 10.1038/s41467-018-04437-9
[42]

Graeber K, Voegele A, Büttner-Mainik A, Sperber K, Mummenhoff K, et al. 2013. Spatiotemporal seed development analysis provides insight into primary dormancy induction and evolution of the Lepidium DELAY OF GERMINATION1 genes. Plant Physiology 161:1903−17

doi: 10.1104/pp.112.213298
[43]

Rikiishi K, Maekawa M. 2014. Seed maturation regulators are related to the control of seed dormancy in wheat (Triticum aestivum L.). PLoS One 9:e107618

doi: 10.1371/journal.pone.0107618
[44]

Chang X, Yang M, Li H, Wu J, Zhang J, et al. 2023. Cloning of the promoter of rice brown planthopper feeding-inducible gene OsTPS31 and identification of related cis-regulatory elements. Pest Management Science 79:1809−19

doi: 10.1002/ps.7356
[45]

Chen N, Wang H, Abdelmageed H, Veerappan V, Tadege M, et al. 2020. HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. New Phytologist 227:840−56

doi: 10.1111/nph.16559
[46]

Carbonero P, Iglesias-Fernández R, Vicente-Carbajosa J. 2017. The AFL subfamily of B3 transcription factors: evolution and function in angiosperm seeds. Journal of Experimental Botany 68:871−80

doi: 10.1093/jxb/erw458
[47]

Jia H, Suzuki M, McCarty DR. 2014. Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks. Wiley Interdisciplinary Reviews: Developmental Biology 3:135−45

doi: 10.1002/wdev.126
[48]

Sasnauskas G, Kauneckaitė K, Siksnys V. 2018. Structural basis of DNA target recognition by the B3 domain of Arabidopsis epigenome reader VAL1. Nucleic Acids Research 46:4316−24

doi: 10.1093/nar/gky256
[49]

Baud S, Kelemen Z, Thévenin J, Boulard C, Blanchet S, et al. 2016. Deciphering the molecular mechanisms underpinning the transcriptional control of gene expression by master transcriptional regulators in Arabidopsis seed. Plant Physiology 171:1099−112

doi: 10.1104/pp.16.00034
[50]

Pelletier JM, Kwong RW, Park S, Le BH, Baden R, et al. 2017. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proceedings of the National Academy of Sciences of the United States of America 114:E6710−E6719

doi: 10.1073/pnas.1707957114