| [1] |
Li T, Feng ZQ, Zhu BH, Li ML, Li GD, et al. 2022. Functional identification of bHLH transcription factor MdSAT1 in the ammonium response. Fruit Research 2:17 doi: 10.48130/frures-2022-0017 |
| [2] |
Jiao H, Hua Z, Zhou J, Hu J, Zhao Y, et al. 2023. Genome-wide analysis of Panax MADS-box genes reveals role of PgMADS41 and PgMADS44 in modulation of root development and ginsenoside synthesis. International Journal of Biological Macromolecules 233:123648 doi: 10.1016/j.ijbiomac.2023.123648 |
| [3] |
Castro-Rodríguez V, Assaf-Casals I, Pérez-Tienda J, Fan X, Avila C, et al. 2016. Deciphering the molecular basis of ammonium uptake and transport in maritime pine. Plant, Cell & Environment 39:1669−82 doi: 10.1111/pce.12692 |
| [4] |
Li H, Hu B, Chu C. 2017. Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. Journal of Experimental Botany 68:2477−88 doi: 10.1093/jxb/erx101 |
| [5] |
Ren B, Huang Z, Liu P, Zhao B, Zhang J. 2023. Urea ammonium nitrate solution combined with urease and nitrification inhibitors jointly mitigate NH3 and N2O emissions and improves nitrogen efficiency of summer maize under fertigation. Field Crops Research 296:108909 doi: 10.1016/j.fcr.2023.108909 |
| [6] |
Li Z, Cao Y, Zhu J, Liu J, Li F, et al. 2024. Comparative transcriptome and hormone analyses of roots in apple among three rootstocks with different rooting abilities. PeerJ 12:e18244 doi: 10.7717/peerj.18244 |
| [7] |
Xu G, Fan X, Miller AJ. 2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology 63:153−82 doi: 10.1146/annurev-arplant-042811-105532 |
| [8] |
Liu X, Hu B, Chu C. 2022. Nitrogen assimilation in plants: current status and future prospects. Journal of Genetics and Genomics 49:394−404 doi: 10.1016/j.jgg.2021.12.006 |
| [9] |
Liu L, Weng Y, Fang J, Zhao Z, Du S. 2022. Understanding the effect of GO on nitrogen assimilation in wheat through transcriptomics and metabolic process analysis. Chemosphere 296:134000 doi: 10.1016/j.chemosphere.2022.134000 |
| [10] |
Ma J, Yang Y, Luo W, Yang C, Ding P, et al. 2017. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.). PLoS One 12:e0181443 doi: 10.1371/journal.pone.0181443 |
| [11] |
Wang X, Chai X, Gao B, Deng C, Günther CS, et al. 2023. Multi-omics analysis reveals the mechanism of bHLH130 responding to low-nitrogen stress of apple rootstock. Plant Physiology 191:1305−23 doi: 10.1093/plphys/kiac519 |
| [12] |
Zhuo M, Sakuraba Y, Yanagisawa S. 2024. Dof1.7 and NIGT1 transcription factors mediate multilayered transcriptional regulation for different expression patterns of NITRATE TRANSPORTER2 genes under nitrogen deficiency stress. New Phytologist 242:2132−47 doi: 10.1111/nph.19695 |
| [13] |
Gao Y, Xu Z, Zhang L, Li S, Wang S, et al. 2020. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nature Communications 11:5219 doi: 10.1038/s41467-020-19019-x |
| [14] |
De Bodt S, Raes J, Van de Peer Y, Theißen G. 2003. And then there were many: MADS goes genomic. Trends in Plant Science 8:475−83 doi: 10.1016/j.tplants.2003.09.006 |
| [15] |
Alvarez-Buylla ER, García-Ponce B, de la Paz Sánchez M, Espinosa-Soto C, García-Gómez ML, et al. 2019. MADS-box genes underground becoming mainstream: plant root developmental mechanisms. New Phytologist 223:1143−58 doi: 10.1111/nph.15793 |
| [16] |
Lai X, Daher H, Galien A, Hugouvieux V, Zubieta C. 2019. Structural basis for plant MADS transcription factor oligomerization. Computational and Structural Biotechnology Journal 17:946−53 doi: 10.1016/j.csbj.2019.06.014 |
| [17] |
Wang Y, Zhang J, Hu Z, Guo X, Tian S, et al. 2019. Genome-wide analysis of the MADS-box transcription factor family in Solanum lycopersicum. International Journal of Molecular Sciences 20:2961 doi: 10.3390/ijms20122961 |
| [18] |
Wan S, Liang B, Yang L, Hu W, Kuang L, et al. 2023. The MADS-box family gene PtrANR1 encodes a transcription activator promoting root growth and enhancing plant tolerance to drought stress. Plant Cell Reports 43:16 doi: 10.1007/s00299-023-03121-7 |
| [19] |
Montiel G, Gaudet M, Laurans F, Rozenberg P, Simon M, et al. 2020. Overexpression of MADS-box gene AGAMOUS-LIKE 12 activates root development in Juglans sp. and Arabidopsis thaliana. Plants 9:444 doi: 10.3390/plants9040444 |
| [20] |
Garay-Arroyo A, Ortiz-Moreno E, de la Paz Sánchez M, Murphy AS, García-Ponce B, et al. 2013. The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. The EMBO Journal 32:2884−95 doi: 10.1038/emboj.2013.216 |
| [21] |
Yu LH, Miao ZQ, Qi GF, Wu J, Cai XT, et al. 2014. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Molecular Plant 7:1653−69 doi: 10.1093/mp/ssu088 |
| [22] |
Liu W, Han X, Zhan G, Zhao Z, Feng Y, et al. 2015. A novel sucrose-regulatory MADS-box transcription factor GmNMHC5 promotes root development and nodulation in soybean (Glycine max [L.] Merr.). International Journal of Molecular Sciences 16:20657−73 doi: 10.3390/ijms160920657 |
| [23] |
Yu C, Liu Y, Zhang A, Su S, Yan A, et al. 2015. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. PLoS One 10:e0135196 doi: 10.1371/journal.pone.0135196 |
| [24] |
Smoczynska A, Pacak A, Grabowska A, Bielewicz D, Zadworny M, et al. 2022. Excess nitrogen responsive HvMADS27 transcription factor controls barley root architecture by regulating abscisic acid level. Frontiers in Plant Science 13:950796 doi: 10.3389/fpls.2022.950796 |
| [25] |
Wu J, Lawit SJ, Weers B, Sun J, Mongar N, et al. 2019. Overexpression of zmm28 increases maize grain yield in the field. Proceedings of the National Academy of Sciences of the United States of America 116:23850−58 doi: 10.1073/pnas.1902593116 |
| [26] |
Liu Y, Jia Z, Li X, Wang Z, Chen F, et al. 2020. Involvement of a truncated MADS-box transcription factor ZmTMM1 in root nitrate foraging. Journal of Experimental Botany 71:4547−61 doi: 10.1093/jxb/eraa116 |
| [27] |
Chen Q, Lian M, Guo J, Zhang B, Yang S, et al. 2022. Comparative transcriptome analysis of two peach rootstocks uncovers the effect of gene differential expression on nitrogen use efficiency. International Journal of Molecular Sciences 23:11144 doi: 10.3390/ijms231911144 |
| [28] |
Wu X, Wang Z, Du A, Gao H, Liang J, et al. 2024. Transcription factor LBD16 targets cell wall modification/ion transport genes in peach lateral root formation. Plant Physiology 194:2472−90 doi: 10.1093/plphys/kiae017 |
| [29] |
Osmont KS, Sibout R, Hardtke CS. 2007. Hidden branches: developments in root system architecture. Annual Review of Plant Biology 58:93−113 doi: 10.1146/annurev.arplant.58.032806.104006 |
| [30] |
Saini S, Sharma I, Kaur N, Pati PK. 2013. Auxin: a master regulator in plant root development. Plant Cell Reports 32:741−57 doi: 10.1007/s00299-013-1430-5 |
| [31] |
Gaudinier A, Rodriguez-Medina J, Zhang L, Olson A, Liseron-Monfils C, et al. 2018. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature 563:259−64 doi: 10.1038/s41586-018-0656-3 |
| [32] |
Liu Z, Ma Z, Li J, Bian N, Guo Z, et al. 2023. Interfering small ubiquitin modifiers (SUMO) exhibits apple's enhanced tolerance to nitrogen deficiency. Fruit Research 3:24 doi: 10.48130/frures-2023-0024 |
| [33] |
Liu GD, An XH, Rui L, Liu RX, Li HL, et al. 2024. Auxin response factor MdARF18 regulates MdNRT1.1 to affect nitrogen utilization in apple. Fruit Research 4:e027 doi: 10.48130/frures-0024-0021 |
| [34] |
Zhang S, Peng F, Xiao Y, Wang W, Wu X. 2020. Peach PpSnRK1 participates in sucrose-mediated root growth through auxin signaling. Frontiers in Plant Science 11:409 doi: 10.3389/fpls.2020.00409 |
| [35] |
Li A, Chen G, Yu X, Zhu Z, Zhang L, et al. 2019. The tomato MADS-box gene SlMBP9 negatively regulates lateral root formation and apical dominance by reducing auxin biosynthesis and transport. Plant Cell Reports 38:951−63 doi: 10.1007/s00299-019-02417-x |
| [36] |
Devaiah BN, Karthikeyan AS, Raghothama KG. 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology 143:1789−801 doi: 10.1104/pp.106.093971 |
| [37] |
Zhang F, Wang J, Ding T, Lin X, Hu H, et al. 2024. MYB2 and MYB108 regulate lateral root development by interacting with LBD29 in Arabidopsis thaliana. Journal of Integrative Plant Biology 66:1675−87 doi: 10.1111/jipb.13720 |
| [38] |
Huang S, Liang Z, Chen S, Sun H, Fan X, et al. 2019. A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation. Plant Physiology 180:882−95 doi: 10.1104/pp.19.00142 |
| [39] |
Schiphorst C, Achterberg L, Gómez R, Koehorst R, Bassi R, et al. 2022. The role of light-harvesting complex I in excitation energy transfer from LHCII to photosystem I in Arabidopsis. Plant Physiology 188:2241−52 doi: 10.1093/plphys/kiab579 |
| [40] |
Green BR, Pichersky E, Kloppstech K. 1991. Chlorophyll a/b-binding proteins: an extended family. Trends in Biochemical Sciences 16:181−86 doi: 10.1016/0968-0004(91)90072-4 |