[1]

Li B, Liu T, Ali A, Xiao Y, Shan N, et al. 2022. Complete chloroplast genome sequences of three aroideae species (Araceae): lights into selective pressure, marker development and phylogenetic relationships. BMC Genomics 23:218

doi: 10.1186/s12864-022-08400-3
[2]

Temesgen M, Retta N. 2015. Nutritional potential, health and food security benefits of taro Colocasia esculenta (L.): a review. The Open Food Science Journal 36:23−30

[3]

Aditika, Kapoor B, Singh S, Kumar P. 2021. Taro (Colocasia esculenta): Zero wastage orphan food crop for food and nutritional security. South African Journal of Botany 145:157−69

doi: 10.1016/j.sajb.2021.08.014
[4]

Sánchez-Chino XM, Corzo-Ríos LJ, Jiménez-Martínez C, Argüello-García E, Martínez-Herrera J. 2021. Nutritional Chemical Analysis of Taro (Colocasia esculenta Schott) Accessions from the State of Tabasco, Mexico. AGRO Productividad 14:173

doi: 10.32854/agrop.v14i10.2074
[5]

Tattiyakul J, Asavasaksakul S, Pradipasena P. 2006. Chemical and physical properties of flour extracted from taro Colocasia esculenta (L.) Schott grown in different regions of Thailand. ScienceAsia 32:279−84

doi: 10.2306/scienceasia1513-1874.2006.32.279
[6]

Zhang E, Shen W, Jiang W, Li W, Wan X, et al. 2023. Research progress on the bulb expansion and starch enrichment in taro (Colocasia esculenta (L). Schott). PeerJ 11:e15400

doi: 10.7717/peerj.15400
[7]

Li J, Seng S, Li D, Zhang F, Liu Y, et al. 2021. Antagonism between abscisic acid and gibberellin regulates starch synthesis and corm development in Gladiolus hybridus. Horticulture Research 8:155

doi: 10.1038/s41438-021-00589-w
[8]

Kolachevskaya OO, Myakushina YA, Getman IA, Lomin SN, Deyneko IV, et al. 2021. Hormonal regulation and crosstalk of auxin/cytokinin signaling pathways in potatoes in vitro and in relation to vegetation or tuberization stages. International Journal of Molecular Sciences 22:8207

doi: 10.3390/ijms22158207
[9]

Zhu Q, Li B, Liu X, Shan N, Sun J, et al. 2022. Uncovering the mechanism preliminarily of formation and development of taro corm in vitro by morphological physiology and transcriptomic analysis. Scientia Horticulturae 291:110575

doi: 10.1016/j.scienta.2021.110575
[10]

Utsumi Y, Utsumi C, Tanaka M, Takahashi S, Okamoto Y, et al. 2022. Suppressed expression of starch branching enzyme 1 and 2 increases resistant starch and amylose content and modifies amylopectin structure in cassava. Plant Molecular Biology 108:413−27

doi: 10.1007/s11103-021-01209-w
[11]

Seng S, Wu J, Sui J, Wu C, Zhong X, et al. 2016. ADP-glucose pyrophosphorylase gene plays a key role in the quality of corm and yield of cormels in gladiolus. Biochemical and Biophysical Research Communications 474:206−12

doi: 10.1016/j.bbrc.2016.04.103
[12]

Ferreira SJ, Senning M, Fischer-Stettler M, Streb S, Ast M, et al. 2017. Simultaneous silencing of isoamylases ISA1, ISA2 and ISA3 by multi-target RNAi in potato tubers leads to decreased starch content and an early sprouting phenotype. PLoS One 12:e0181444

doi: 10.1371/journal.pone.0181444
[13]

Liu H, You Y, Zheng X, Diao Y, Huang X, et al. 2015. Deep sequencing of the Colocasia esculenta transcriptome revealed candidate genes for major metabolic pathways of starch synthesis. South African Journal of Botany 97:101−06

doi: 10.1016/j.sajb.2014.11.008
[14]

Bae JM, Kwak MS, Noh SA, Oh MJ, Kim YS, et al. 2014. Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Research 23:657−67

doi: 10.1007/s11248-014-9804-1
[15]

de Castro LA, Carneiro M, de C Neshich D, de Paiva GR. 1992. Spatial and temporal gene expression patterns occur during corm development. The Plant Cell 4:1549−59

doi: 10.1105/tpc.4.12.1549
[16]

Liu X, Zhu Q, Shan N, Sun J, Zhang H, et al. 2020. Identification of mutants from tissue culture in multi-cormels taro by phenotypic traits and SSR markers. Acta Agriculturae Universitatis Jiangxiensis 42:241−49

doi: 10.13836/j.jjau.2020028
[17]

Gao J. 2006. Experimental guidance in plant physiology. Beijing: Higher Education Press

[18]

Seng S, Wu J, Liang J, Zhang F, Yang Q, et al. 2017. Silencing GhAGPL1 reduces the quality and quantity of corms and cormels in gladiolus. Journal of the American Society for Horticultural Science 142:119−25

doi: 10.21273/JASHS03944-16
[19]

Tabatabaei M S, Ahmed M. Enzyme-linked immunosorbent assay (ELISA). In Cancer Cell Biology, ed. Christian SL. New York, NY: Humana. Vol 2508. pp. 115–34. doi: 10.1007/978-1-0716-2376-3_10

[20]

Cao T, Wang S, Ali A, Shan N, Sun J, et al. 2023. Transcriptome and metabolome analysis reveals the potential mechanism of tuber dynamic development in yam (Dioscorea polystachya Turcz.). LWT 181:114764

doi: 10.1016/j.lwt.2023.114764
[21]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60

doi: 10.1038/nmeth.3317
[22]

Yin J, Jiang L, Wang L, Han X, Guo W, et al. 2021. A high-quality genome of taro (Colocasia esculenta (L.) Schott), one of the world's oldest crops. Molecular Ecology Resources 21:68−77

doi: 10.1111/1755-0998.13239
[23]

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357−59

doi: 10.1038/nmeth.1923
[24]

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

doi: 10.1186/1471-2105-12-323
[25]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[26]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42

doi: 10.1016/j.molp.2023.09.010
[27]

Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a given motif. Bioinformatics 27:1017−18

doi: 10.1093/bioinformatics/btr064
[28]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303
[29]

Lalitha S. 2000. Primer Premier 5. Biotech Software & Internet Report 1:270−72

[30]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[31]

Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. 2025. KEGG: biological systems database as a model of the real world. Nucleic Acids Research 53:D672−D677

doi: 10.1093/nar/gkae909
[32]

Roumeliotis E, Kloosterman B, Oortwijn M, Kohlen W, Bouwmeester HJ, et al. 2012. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Journal of Experimental Botany 63:4539−47

doi: 10.1093/jxb/ers132
[33]

Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JAD, et al. 2008. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. The Plant Cell 20:2603−18

doi: 10.1105/tpc.108.060913
[34]

Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Prat S, et al. 2007. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. The Plant Journal 52:362−73

doi: 10.1111/j.1365-313X.2007.03245.x
[35]

Xie Z, Jin L, Sun Y, Zhan C, Tang S, et al. 2024. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice. Plant Communications 5:100782

doi: 10.1016/j.xplc.2023.100782
[36]

Bouteraa MT, Ben Romdhane W, Baazaoui N, Alfaifi MY, Chouaibi Y, et al. 2023. GASA proteins: review of their functions in plant environmental stress tolerance. Plants 12:2045

doi: 10.3390/plants12102045
[37]

Nahirñak V, Rivarola M, Gonzalez De Urreta M, Paniego N, Hopp HE, et al. 2016. Genome-wide analysis of the Snakin/GASA gene family in Solanum tuberosum cv. Kennebec. American Journal of Potato Research 93:172−88

doi: 10.1007/s12230-016-9494-8
[38]

Nahirñak V, Rivarola M, Almasia NI, Barrios Barón MP, Hopp HE, et al. 2019. Snakin-1 affects reactive oxygen species and ascorbic acid levels and hormone balance in potato. PLoS One 14:e0214165

doi: 10.1371/journal.pone.0214165
[39]

Fan M, Bai MY, Kim JG, Wang T, Oh E, et al. 2014. The bHLH transcription factor HBI1 mediates the trade-off between growth and pathogen-associated molecular pattern-triggered immunity in Arabidopsis. The Plant Cell 26:828−41

doi: 10.1105/tpc.113.121111
[40]

Dong W, He F, Jiang H, Liu L, Qiu Z. 2021. Comparative transcriptome sequencing of taro corm development with a focus on the starch and sucrose metabolism pathway. Frontiers in Genetics 12:771081

doi: 10.3389/fgene.2021.771081
[41]

Firon N, Labonte D, Villordon A, Kfir Y, Solis J, et al. 2013. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics 14:460

doi: 10.1186/1471-2164-14-460
[42]

Van Harsselaar J K, Lorenz J, Senning M, Sonnewald U, Sonnewald S. 2017. Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.). BMC Genomics 18:37

doi: 10.1186/s12864-016-3381-z
[43]

Yang M, Zhu L, Pan C, Xu L, Liu Y, et al. 2015. Transcriptomic analysis of the regulation of rhizome formation in temperate and tropical lotus (Nelumbo nucifera). Scientific Reports 5:13059

doi: 10.1038/srep13059
[44]

Yu R, Wang J, Xu L, Wang Y, Wang R, et al. 2016. Transcriptome profiling of taproot reveals complex regulatory networks during taproot thickening in radish (Raphanus sativus L.). Frontiers in Plant Science 7:1210

doi: 10.3389/fpls.2016.01210
[45]

Hendriks JHM, Kolbe A, Gibon Y, Stitt M, Geigenberger P. 2003. ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiology 133:838−49

doi: 10.1104/pp.103.024513
[46]

Müller-Röber B, Sonnewald U, Willmitzer L. 1992. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. The EMBO Journal 11:1229−38

doi: 10.1002/j.1460-2075.1992.tb05167.x
[47]

Nagata T, Hara H, Saitou K, Kobashi A, Kojima K, et al. 2012. Activation of ADP-Glucose Pyrophosphorylase Gene Promoters by a WRKY Transcription Factor, AtWRKY20, in Arabidopsis thaliana L. and Sweet Potato (Ipomoea batatas Lam.). Plant Production Science 15:10−18

doi: 10.1626/pps.15.10
[48]

Huang L, Liu Q. 2023. High-resistant starch crops for human health. Proceedings of the National Academy of Sciences of the United States of America 120:e1988977176

doi: 10.1073/pnas.2305990120
[49]

Cai Z, Cai Z, Huang J, Wang A, Ntambiyukuri A, et al. 2022. Transcriptomic analysis of tuberous root in two sweet potato varieties reveals the important genes and regulatory pathways in tuberous root development. BMC Genomics 23:473

doi: 10.1186/s12864-022-08670-x
[50]

Li X, Yang J, Hao B, Lu Y, Qian Z, et al. 2019. Comparative transcriptome and metabolome analyses provide new insights into the molecular mechanisms underlying taproot thickening in Panax notoginseng. BMC Plant Biology 19:451

doi: 10.1186/s12870-019-2067-5
[51]

Xie Y. 2006. AP2/EREBP-a Special Transcription Factor Family in Plant. Journal of Qinghai Normal University 2006:80−83

doi: 10.3969/j.issn.1001-7542.2006.03.027
[52]

Xiao Q, Wang Y, Du J, Li H, Wei B, et al. 2017. ZmMYB14 is an important transcription factor involved in the regulation of the activity of the ZmBT1 promoter in starch biosynthesis in maize. The FEBS Journal 284:3079−99

doi: 10.1111/febs.14179
[53]

Xu X, Vreugdenhil D, van Lammeren AAM. 1998. Cell division and cell enlargement during potato tuber formation. Journal of Experimental Botany 49:573−82

doi: 10.1093/jxb/49.320.573
[54]

Tank JG, Thaker VS. 2011. Cyclin dependent kinases and their role in regulation of plant cell cycle. Biologia Plantarum 55:201−12

doi: 10.1007/s10535-011-0031-9
[55]

Nagata T, Saitou K. 2009. Regulation of expression of D3-type cyclins and ADP-glucose pyrophosphorylase genes by sugar, cytokinin and ABA in sweet potato (Ipomoea batatas Lam.). Plant Production Science 12:434−42

doi: 10.1626/pps.12.434
[56]

Hou G, Wu G, Jiang H, Bai X, Chen Y. 2024. RNA-Seq reveals that multiple pathways are involved in tuber expansion in tiger nuts (Cyperus esculentus L.). International Journal of Molecular Sciences 25:5100

doi: 10.3390/ijms25105100
[57]

Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, et al. 2005. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. The Plant Cell 17:2384−96

doi: 10.1105/tpc.105.033043
[58]

Chen Y, Zhang B, Li C, Lei C, Kong C, et al. 2019. A comprehensive expression analysis of the expansin gene family in potato (Solanum tuberosum) discloses stress-responsive expansin-like B genes for drought and heat tolerances. PLoS One 14:e0219837

doi: 10.1371/journal.pone.0219837
[59]

Jung J, O'Donoghue EM, Dijkwel PP, Brummell DA. 2010. Expression of multiple expansin genes is associated with cell expansion in potato organs. Plant Science 179:77−85

doi: 10.1016/j.plantsci.2010.04.007