[1]

Ghazvinian A, Gürsoy B. 2022. Mycelium-based composite graded materials: assessing the effects of time and substrate mixture on mechanical properties. Biomimetics 7(2):48

doi: 10.3390/biomimetics7020048
[2]

Maierhofer D, Alaux N, Vašatko H, Saade M, Stavric M, et al. 2024. The influence of biogenic carbon assessment assumptions on biogenic global warming results: case study of an innovative mycelium-based composite block. IOP Conference Series: Earth and Environmental Science 1363(1):012060

doi: 10.1088/1755-1315/1363/1/012060
[3]

Le Ferrand H. 2024. Critical review of mycelium-bound product development to identify barriers to entry and paths to overcome them. Journal of Cleaner Production 450:141859

doi: 10.1016/j.jclepro.2024.141859
[4]

Bonenberg A, Sydor M, Cofta G, Doczekalska B, Grygorowicz-Kosakowska K. 2023. Mycelium-based composite materials: Study of acceptance. Materials 16(6):2164

doi: 10.3390/ma16062164
[5]

Meyer V, Mengel S. 2024. Patent landscape analysis for materials based on fungal mycelium: A guidance report on how to interpret the current patent situation. Fungal Biology and Biotechnology 11(1):11

doi: 10.1186/s40694-024-00177-2
[6]

Sreerag NK, Kashyap P, Shilpa VS, Thakur M, Goksen G. 2025. Recent advances on mycelium-based biocomposites: synthesis, strains, lignocellulosic substrates, production parameters. Polymer Reviews 65:169−98

doi: 10.1080/15583724.2024.2423949
[7]

Yang L, Park D, Qin Z. 2021. Material function of mycelium-based bio-composite: A review. Frontiers in Materials 8:737377

doi: 10.3389/fmats.2021.737377
[8]

Gezer ED, Uçar E, Gümüşkaya E. 2024. Physical and mechanical properties of mycelium-based fiberboards. BioResources 19(2):3421−35

doi: 10.15376/biores.19.2.3421-3435
[9]

Whabi V, Yu B, Xu J. 2024. From nature to design: Tailoring pure mycelial materials for the needs of tomorrow. Journal of Fungi 10(3):183

doi: 10.3390/jof10030183
[10]

Womer S, Huynh T, John S. 2023. Hybridizations and reinforcements in mycelium composites: a review. Bioresource Technology Reports 22:101456

doi: 10.1016/j.biteb.2023.101456
[11]

Huang Z, Wei Y, Ali Hadigheh S. 2024. Variations in the properties of engineered mycelium-bound composites (MBCs) under different manufacturing conditions. Buildings 14(1):155

doi: 10.3390/buildings14010155
[12]

Soh E, Le Ferrand, H. 2023. Woodpile structural designs to increase the stiffness of mycelium-bound composites. Materials & Design 225:111530

doi: 10.1016/j.matdes.2022.111530
[13]

Shakir MA, Ahmad MI, Yusup Y, Rafatullah M. 2025. From waste to wealth: converting rubber wood sawdust into green mycelium-based composite. Biomass Conversion and Biorefinery 15:739−57

doi: 10.1007/s13399-023-05113-9
[14]

Shen SC, Lee NA, Lockett WJ, Acuil AD, Gazdus HB, et al. 2024. Robust myco-composites: a biocomposite platform for versatile hybrid-living materials. Materials Horizons 11(7):1689−703

doi: 10.1039/D3MH01277H
[15]

Nussbaumer M, Karl T, Benz JP. 2024. Quantification of fungal biomass in mycelium composites made from diverse biogenic side streams. Fungal Biology and Biotechnology 11(1):20

doi: 10.1186/s40694-024-00189-y
[16]

Yan Y, Wang B, Zhang X, Zeng X, Zhu J, et al. 2024. Formaldehyde-free bio-composites based on Pleurotus ostreatus substrate and corn straw waste. BioResources 19(3):4352−65

doi: 10.15376/biores.19.3.4352-4365
[17]

Zhao N, Liu Z, Yu T, Yan F. 2024. Spent coffee grounds: present and future of environmentally friendly applications on industries — a review. Trends in Food Science and Technology 143:104312

doi: 10.1016/j.jpgs.2023.104312
[18]

Lee YG, Cho EJ, Maskey S, Nguyen DT, Bae HJ. 2023. Value-added products from coffee waste: a review. Molecules 28(8):3562

doi: 10.3390/molecules28083562
[19]

Becze A, Simedru D, Barta DG, Senila L, Varaticeanu C, et al. 2024. Sustainable valorisation of coffee waste as a protein source, mycelium-based packaging material, and renewable energy pellet. Molecules 29(21):4983

doi: 10.3390/molecules29214983
[20]

Kohphaisansombat C, Jongpipitaporn Y, Laoratanakul P, Tantipaibulvut S, Euanorasetr J, et al. 2023. Fabrication of mycelium (oyster mushroom)-based composites derived from spent coffee grounds with pineapple fibre reinforcement. Mycology 15:665−82

doi: 10.1080/21501203.2023.2273355
[21]

Kovalcik A, Obruca S, Marova I. 2018. Valorization of spent coffee grounds: A review. Food and Bioproducts Processing 110:104−119

doi: 10.1016/j.fbp.2018.05.002
[22]

Guo J, Zhang Y, Fang J, Ma Z, Li C, et al. 2024. Reduction and reuse of forestry and agricultural bio-waste through innovative green utilization approaches: a review. Forests 15(8):1372

doi: 10.3390/f15081372
[23]

Minh VQ, Vu PT, Thuy NM, Huong HTT, Dang PC. 2024. Current status and potential of circular agricultural economy for sustainable development in the Mekong Delta, Vietnam. Plant Science Today 11(2):412−26

doi: 10.14719/pst.2856
[24]

Firoozi AA, Firoozi AA, Oyejobi DO, Avudaiappan S, Flores ES. 2024. Emerging trends in sustainable building materials: Technological innovations, enhanced performance, and future directions. Results in Engineering 24:103521

doi: 10.1016/j.rineng.2024.103521
[25]

Qin Q, Zeng S, Duan G, Liu Y, Han X, et al. 2024. "Bottom-up" and "top-down" strategies toward strong cellulose-based materials. Chemical Society Reviews 53(18):9306−43

doi: 10.1039/D4CS00387J
[26]

Hossain SKS, Mathur L, Roy PK. 2018. Rice husk/rice husk ash as an alternative source of silica in ceramics: a review. Journal of Asian Ceramic Societies 6(4):299−313

doi: 10.1080/21870764.2018.1539210
[27]

Liu Z, Deng P, Zhang Z. 2022. Application of silica-rich biomass ash solid waste in geopolymer preparation: a review. Construction and Building Materials 356:129142

doi: 10.1016/j.conbuildmat.2022.129142
[28]

Kordi M, Farrokhi N, Pech-Canul MI, Ahmadikhah A. 2024. Rice husk at a glance: From agro-industrial to modern applications. Rice Science 31(1):14−32

doi: 10.1016/j.rsci.2023.08.005
[29]

Sihombing AVR, Utami R, Mauludin LM, Nursyafril, Aryantha INP, et al. 2024. Mycelium bio-composites for civil infrastructure in Indonesia. International Journal of Integrated Engineering 16(9):21−36

doi: 10.30880/ijie.2024.16.09.002
[30]

Das D, Gołąbiewska A, Rout PK. 2024. Geopolymer bricks: The next generation of construction materials for sustainable environment. Construction and Building Materials 445:137876

doi: 10.1016/j.conbuildmat.2024.137876
[31]

Pobłocki K, Pawlak M, Drzeżdżon J, Gawdzik B, Jacewicz D. 2024. Clean production of geopolymers as an opportunity for sustainable development of the construction industry. Science of the Total Environment 928:172579

doi: 10.1016/j.scitotenv.2024.172579
[32]

Torres-Ortega R, Torres-Sanchez D, Lopez-Lara T. 2025. Mechanical properties of hydraulic concretes with partial replacement of Portland cement by pozzolans obtained from agro-industrial residues: a review. Heliyon 11(1):e41004

doi: 10.1016/j.heliyon.2024.e41004
[33]

Jin Q, Zhang Z, Chen J. 2024. A study on the thermal performance of Pleurotus ostreatus/straw mycelium composites and its application in building envelopes. Journal of Building Engineering 92:109646

doi: 10.1016/j.jobe.2024.109646
[34]

Lingam D, Narayan S, Mamun K, Charan D. 2023. Engineered mycelium-based composite materials: comprehensive study of various properties and applications. Construction and Building Materials 391:131841

doi: 10.1016/j.conbuildmat.2023.131841
[35]

Silva M, Ramos AC, Lidon FJ, Reboredo FH, Gonçalves EM. 2024. Pre- and postharvest strategies for Pleurotus ostreatus mushroom in a circular economy approach. Foods 13(10):1464

doi: 10.3390/foods13101464
[36]

Błaszczyk L, Siwulski M, Sobieralski K, Lisiecka J, Jędryczka M. 2014. Trichoderma spp. – application and prospects for use in organic farming and industry. Journal of Plant Protection Research 54(4):309−317

doi: 10.2478/jppr-2014-0047
[37]

Taylor JT, Harting R, Shalaby S, Kenerley CM, Braus GH, et al. 2022. Adhesion as a focus in Trichoderma–Root interactions. Journal of Fungi 8(4):372

doi: 10.3390/jof8040372
[38]

Ly L, Jitjak W. 2022. Biocomposites from agricultural wastes and mycelia of a local mushroom, Lentinus squarrosulus (Mont. ) Singer. Open Agriculture 7(1):634−43

doi: 10.1515/opag-2022-0128
[39]

Munir MJ, Kazmi SMS, Gencel O, Ahmad MR, Chen B. 2021. Synergistic effect of rice husk, glass and marble sludges on the engineering characteristics of eco-friendly bricks. Journal of Building Engineering 42:102484

doi: 10.1016/j.jobe.2021.102484
[40]

Suksawang N, Alsabbagh A, Shaban A, Wtaife S. 2020. Using post-cracking strength to determine flexural capacity of ultra-thin whitetopping (UTW) pavements. Construction and Building Materials 240:117831

doi: 10.1016/j.conbuildmat.2019.117831
[41]

Dendukuri N, Reinhold C. 2005. Correlation and regression. American Journal of Roentgenology 185(1):3−18

doi: 10.2214/ajr.185.1.01850003
[42]

Baak M, Koopman R, Snoek H, Klous S. 2020. A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics. Computational Statistics & Data Analysis 152:107043

doi: 10.1016/j.csda.2020.107043
[43]

Elsacker E, Vandelook S, Brancart J, Peeters E, De Laet L. 2019. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS ONE 14(7):e0213954

doi: 10.1371/journal.pone.0213954
[44]

Sydor M, Cofta G, Doczekalska B, Bonenberg A. 2022. Fungi in mycelium-based composites: usage and recommendations. Materials 15(18):6283

doi: 10.3390/ma15186283
[45]

Hernando AV, Sun W, Abitbol T. 2024. "You Are What You Eat": how fungal adaptation can be leveraged toward myco-material properties. Global Challenges 8(3):2300140

doi: 10.1002/gch2.202300140
[46]

Rigobello A, Ayres P. 2022. Compressive behaviour of anisotropic mycelium-based composites. Scientific Reports 12(1):6846

doi: 10.1038/s41598-022-10930-5
[47]

Peng L, Yi J, Yang X, Xie J, Chen C. 2023. Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts. Journal of Bioresources and Bioproducts 8(1):78−89

doi: 10.1016/j.jobab.2022.11.005
[48]

Sakunwongwiriya P, Taweepreda W, Luenram S, Chungsiriporn J, Iewkittayakorn J. 2024. Characterization of uncoated and coated fungal mycelium-based composites from water hyacinth. Coatings 14(7):862

doi: 10.3390/coatings14070862
[49]

Suwandecha T, Pisuchpen S. 2024. Characterization and performance evaluation of mycelium-based biofoams for cushioning materials using edible mushrooms. Journal of Renewable Materials 12(11):1811−36

doi: 10.32604/jrm.2024.056334
[50]

Gan JK, Soh E, Saeidi N, Javadian A, Hebel DE, et al. 2022. Temporal characterization of biocycles of mycelium-bound composites made from bamboo and Pleurotus ostreatus for indoor usage. Scientific Reports 12(1):19362

doi: 10.1038/s41598-022-24070-3
[51]

Farrera-Vázquez N, Aviles-Trujilo L, Moreira-Acosta J, García-Ramos O, Velazquez-Gurrola A, et al. 2023. Development of an insulating material based on Trametes elegans mycelium and the study of its hygrothermal properties. Green Materials 11(1):28−36

doi: 10.1680/jgrma.21.00046
[52]

Pittau F, Carcassi OG, Servalli M, Pellegrini S, Claude S. 2022. Hygrothermal characterization of bio-based thermal insulation made of fibres from invasive alien lake plants bounded with mycelium. IOP Conference Series: Earth and Environmental Science 1078:012069

doi: 10.1088/1755-1315/1078/1/012069
[53]

Shao G, Zhang L, Xu D, Jin Y, Wu F, et al. 2025. Green and sustainable bioboards: Biomanufacturing of mycelium-based composite boards with tunable properties. Chemical Engineering Journal 503:158382

doi: 10.1016/j.cej.2024.158382
[54]

Jones M, Mautner A, Luenco S, Bismarck A, John S. 2020. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials and Design 187:108397

doi: 10.1016/j.matdes.2019.108397
[55]

Nashiruddin NI, Chua KS, Mansor AFA. Rahman R, Lai JC, et al. 2022. Effect of growth factors on the production of mycelium-based biofoam. Clean Technologies and Environmental Policy 24(1):351−61

doi: 10.1007/s10098-021-02146-4
[56]

Liu R, Li X, Long L, Sheng Y, Xu J, et al. 2020. Improvement of mechanical properties of mycelium/cotton stalk composites by water immersion. Composite Interfaces 27(10):953−66

doi: 10.1080/09276440.2020.1716573
[57]

Jinanukul P, Kumla J, Aiduang W, Thamjaree W, Oranratmanee R, et al. 2024. Comparative evaluation of mechanical and physical properties of mycelium composite boards made from lentinus sajor-caju with various ratios of corn husk and sawdust. Journal of Fungi 10(9):634

doi: 10.3390/jof10090634
[58]

Shen Y. 2017. Rice husk silica derived nanomaterials for sustainable applications. Renewable and Sustainable Energy Reviews 80:453−66

doi: 10.1016/j.rser.2017.05.115
[59]

Mbabali H, Lubwama M, Yiga VA, Were E, Kasedde H. 2024. Development of rice husk and sawdust mycelium-based bio-composites: Optimization of mechanical, physical, and thermal properties. Journal of The Institution of Engineers (India): Series D 105(1):97−117

doi: 10.1007/s40033-023-00458-x
[60]

Attias N, Danai O, Tarazi E, Pereman I, Grobman YJ. 2019. Implementing bio-design tools to develop mycelium-based products. The Design Journal 22:1647−57

doi: 10.1080/14606925.2019.1594997
[61]

Butu A, Rodino S, Miu B, Butu M. 2020. Mycelium-based materials for the ecodesign of bioeconomy. Digest Journal of Nanomaterials and Biostructures 15:1129−40

doi: 10.15251/DJNB.2020.154.1129
[62]

Tacer-Caba Z, Varis JJ, Lankinen P, Mikkonen KS. 2020. Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Materials & Design 192:108728

doi: 10.1016/j.matdes.2020.108728
[63]

Alemu D, Tafesse M, Gudetta Deressa Y. 2022. Production of mycoblock from the mycelium of the fungus Pleurotus ostreatus for use as sustainable construction materials. Advances in Materials Science and Engineering 2022(1):2876643

doi: 10.1155/2022/2876643
[64]

Shakir MA, Ahmad MI. 2024. Bioproduct advances: insight into failure factors in mycelium composite fabrication. Biofuels, Bioproducts and Biorefining 18(5):1739−54

doi: 10.1002/bbb.2620
[65]

Roberson RW, Abril M, Blackwell M, Letcher P, McLaughlin DJ, et al. 2010. Hyphal structure. In Cellular and Molecular Biology of Filamentous Fungi, eds. Borkovich KA, Ebbole DJ. vol. 2. Washington D.C., USA: ASM Press. pp. 8−24. doi: 10.1128/9781555816636.ch2

[66]

Bao D, Kinugasa S, Kitamoto Y. 2004. The biological species of oyster mushrooms (Pleurotus spp.) from Asia based on mating compatibility tests. Journal of Wood Science 50:162−68

doi: 10.1007/s10086-003-0540-z
[67]

Park JS, Lin H, Chen E, Alqrinawi H, Dong Y, et al. 2025. Mechanical properties of fine-grained soils treated with fungal mycelium of Trichoderma virens. Journal of Geotechnical and Geoenvironmental Engineering 151(5):04025030

doi: 10.1061/jggefk.gteng-12745
[68]

Farrahnoor A, Sazali NAA, Yusoff H, Zhou BT. 2024. Effect of beeswax and coconut oil as natural coating agents on morphological, degradation behaviour, and water barrier properties of mycelium-based composite in modified controlled environment. Progress in Organic Coatings 196:108763

doi: 10.1016/j.porgcoat.2024.108763
[69]

Yan W, Yu L, Shi T, Li S, Liu L, et al. 2024. Properties of large size in situ formed mycelium bio-foam. Journal of Forestry Engineering 9(6):124−32

doi: 10.13360/j.issn.2096-1359.202312033
[70]

Xie H, Zhang H, Liu X, Tian S, Liu Y, et al. 2021. Design and preparation of multiple function-integrated Lignin/Tannin/ZnONP composite coatings for paper-based green packaging. Biomacromolecules 22(8):3251−63

doi: 10.1021/acs.biomac.1c00340
[71]

Soh E, Chew ZY, Saeidi N, Javadian A, Hebel D, et al. 2020. Development of an extrudable paste to build mycelium-bound composites. Materials and Design 195:109058

doi: 10.1016/j.matdes.2020.109058
[72]

Pang B, Zhou T, Cao XF, Zhao BC, Sun Z, et al. 2022. Performance and environmental implication assessments of green bio-composite from rice straw and bamboo. Journal of Cleaner Production 375:134037

doi: 10.1016/j.jclepro.2022.134037
[73]

Voutetaki ME, Mpalaskas AC. 2024. Natural Fiber-Reinforced Mycelium Composite for Innovative and Sustainable Construction Materials. Fibers 12(7):57

doi: 10.3390/fib12070057
[74]

Izan NLM, Bahrin EK, Mohd Yusoff MZ, Simarani K, Sharip NS, et al. 2024. Sustainable utilisation of oil palm empty fruit bunch and Perenniporia subtephropora for eco-friendly mycelium-based biofoam. Biocatalysis and Agricultural Biotechnology 62:103436

doi: 10.1016/j.bcab.2024.103436
[75]

Bitting S, Derme T, Lee J, Van Mele T, Dillenburger B, et al. 2022. Challenges and opportunities in scaling up architectural applications of mycelium-based materials with digital fabrication. Biomimetics 7(2):44

doi: 10.3390/biomimetics7020044
[76]

Özdemir E, Saeidi N, Javadian A, Rossi A, Nolte N, et al. 2022. Wood-veneer-reinforced mycelium composites for sustainable building components. Biomimetics 7(2):39

doi: 10.3390/biomimetics7020039
[77]

Etinosa PO, Salifu AA, Osafo S, Eluu S. C, Obayemi J. D, et al. 2024. Fracture and toughening of mycelium-based biocomposites. Materials & Design 237:112592

doi: 10.1016/j.matdes.2023.112592
[78]

Alaneme KK, Anaele JU, Oke TM, Kareem SA, Adediran M, et al. 2023. Mycelium based composites: a review of their bio-fabrication procedures, material properties and potential for green building and construction applications. Alexandria Engineering Journal 83:234−50

doi: 10.1016/j.aej.2023.10.012
[79]

Jo C, Zhang J, Tam JM, Church GM, Khalil AS, et al. 2023. Unlocking the magic in mycelium: using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Materials Today Bio 19:100560

doi: 10.1016/j.mtbio.2023.100560
[80]

Yang L, Qin Z. 2023. Mycelium-based wood composites for light weight and high strength by experiment and machine learning. Cell Reports Physical Science 4(6):101424

doi: 10.1016/j.xcrp.2023.101424
[81]

Alaux N, Vašatko H, Maierhofer D, Saade MRM, Stavric M, et al. 2024. Environmental potential of fungal insulation: a prospective life cycle assessment of mycelium-based composites. The International Journal of Life Cycle Assessment 29(2):255−72

doi: 10.1007/s11367-023-02243-0
[82]

Ardra R, Karthik S, Padmakumar TG, Kishnan R, Shukla SK, et al. 2024. Mycelium-infused geopolymer bricks for non-load-bearing walls: experimental investigation and life cycle assessment. Innovative Infrastructure Solutions 9(3):72

doi: 10.1007/s41062-024-01379-8
[83]

Weinland F, Lingner T, Schritt H, Gradl D, Reintjes N, et al. 2024. Life cycle assessment of mycelium based composite acoustic insulation panels. Cleaner and Circular Bioeconomy 9:100106

doi: 10.1016/j.clcb.2024.100106
[84]

Abdallah YK, Estévez AT. 2023. Biowelding 3D-printed biodigital brick of seashell-based biocomposite by Pleurotus ostreatus mycelium. Biomimetics 8(6):504

doi: 10.3390/biomimetics8060504
[85]

Teeraphantuvat T, Jatuwong K, Jinanukul P, Thamjaree W, Lumyong S, et al. 2024. Improving the physical and mechanical properties of mycelium-based green composites using paper waste. Polymers 16(2):262

doi: 10.3390/polym16020262
[86]

Aiduang W, Jatuwong K, Jinanukul P, Suwannarach N, Kumla J, et al. 2024. Sustainable innovation: fabrication and characterization of mycelium-based green composites for modern interior materials using agro-industrial wastes and different species of fungi. Polymers 16(4):550

doi: 10.3390/polym16040550
[87]

do Nascimento Deschamps JL, Schulz JG, Riani JC, Bonatti-Chaves M, Bonatti M, et al. 2024. Sustainable production of Pleurotus sajor-caju mushrooms and biocomposites using brewer's spent and agro-industrial residues. Scientific Reports 14(1):26281

doi: 10.1038/s41598-024-77435-1
[88]

Bonga KB, Bertolacci L, Contardi M, Paul UC, Zafar MS, et al. 2024. Mycelium agrowaste-bound biocomposites as thermal and acoustic insulation materials in building construction. Macromolecular Materials and Engineering 309(6):2300449

doi: 10.1002/mame.202300449
[89]

Fahmy MK, Ahmed MM, Ali SA, Tarek D, Maafa IM, et al. 2024. Enhancing the thermal and energy performance of clay bricks with recycled cultivated Pleurotus florida waste. Buildings 14(3):736

doi: 10.3390/buildings14030736
[90]

Majib NM, Sam ST, Yaacob ND, Rohaizad NM, Tan WK. 2023. Characterization of fungal foams from edible mushrooms using different agricultural wastes as substrates for packaging material. Polymers 15(4):873

doi: 10.3390/polym15040873
[91]

Luo J, Chen X, Crump J, Zhou H, Davies DG, et al. 2018. Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete. Construction and Building Materials 164:275−85

doi: 10.1016/j.conbuildmat.2017.12.233
[92]

Van Wylick A, Peeters E, Rahier H, De Laet L. 2023. Self-healing concrete with fungi: an exploration on nutritional sources to sustain fungal growth in a cementitious environment. In Bio-Based Building Materials. ICBBM 2023, eds. Amziane S, Merta I, Page J. vol. 45. Cham: Springer. pp. 629−39. doi: 10.1007/978-3-031-33465-8_48

[93]

Irbe I, Loris GD, Filipova I, Andze L, Skute M. 2022. Characterization of Self-Growing Biomaterials Made of Fungal Mycelium and Various Lignocellulose-Containing Ingredients. Materials 15(21):7608

doi: 10.3390/ma15217608
[94]

Wattanavichean N, Phanthuwongpakdee J, Koedrith P, Laoratanakul P, Thaithatkul B, et al. 2025. Mycelium-based breakthroughs: exploring commercialization, research, and next-gen possibilities. Circular Economy and Sustainability (In press)

doi: 10.1007/s43615-025-00539-x