[1]

Thadaniti S. 2014. Learning the greatness of mother nature festival tourism: a case of Loy Krathong water festival in Thailand. SHS Web of Conferences 12:01050

doi: 10.1051/shsconf/20141201050
[2]

Chantamool A, Laoakka S, Phaengsoi K. 2015. Traditional festivals: Development of tourism routes for linking cultural heritage sources in the catchment watershed of Mekong River Basin in Thailand. International Journal of Sociology and Anthropology 7(11):233−45

doi: 10.5897/IJSA2015.0619
[3]

Lertpiboon P. 2025. The offering rituals in Thailand's agricultural festival: The dual construction of nature worship and cultural identity. Art and Society 4(1):15−17

doi: 10.56397/AS.2025.01.03
[4]

Quigley KF. 1995. Environmental organizations and democratic consolidation in Thailand. Crossroads: An Interdisciplinary Journal of Southeast Asian Studies 9(1):1−29

[5]

Agarwal R. 2010. Water festivals of Thailand: the Indian connection. Silpakorn University International Journal 9:10

[6]

Kantabutra S. 2019. Achieving corporate sustainability: toward a practical theory. Sustainability 11(15):4155

doi: 10.3390/su11154155
[7]

Paulsen DO. 2020. "Water is life, Life is Water"—Environmental engagements in Thailand. Master's thesis. University of Bergen, Norway

[8]

Butu A, Rodino S, Miu B, Butu M. 2020. Mycelium-based materials for the ecodesign of bioeconomy. Digest Journal of Nanomaterials and Biostructures 15:1129−40

doi: 10.15251/DJNB.2020.154.1129
[9]

Sydor M, Cofta G, Doczekalska B, Bonenberg A. 2022. Fungi in mycelium-based composites: usage and recommendations. Materials 15(18):6283

doi: 10.3390/ma15186283
[10]

Biswas PR, Boro H, Doley SN, Dutta AK, Tayung K. 2023. Evaluation of different lignocellulosic-wastes and their combinations on growth and yield of Oyster mushroom (Pleurotus ostreatus). Studies in Fungi 8:7

doi: 10.48130/sif-2023-0007
[11]

Shakir MA, Ahmad MI, Yusup Y, Rafatullah M. 2025. From waste to wealth: converting rubber wood sawdust into green mycelium-based composite. Biomass Conversion and Biorefinery 15(1):739−57

doi: 10.1007/s13399-023-05113-9
[12]

Walker A, Wannasawang N, Taliam W, Keokanngeun L, Luangharn T, et al. 2023. Optimal conditions for mycelial growth and nutritional values of the Auricularia cornea. Studies in Fungi 8:19

doi: 10.48130/sif-2023-0019
[13]

Sakunwongwiriya P, Taweepreda W, Luenram S, Chungsiriporn J, Iewkittayakorn J. 2024. Characterization of uncoated and coated fungal mycelium-based composites from water hyacinth. Coatings 14(7):862

doi: 10.3390/coatings14070862
[14]

Sratong-On P, Puttawongsakul K, Kantawee N. 2025. Physical and mechanical properties of indian oyster mushroom mycelium/sawdust composites for biodegradable packaging materials. Current Applied Science and Technology 25(2):e0262650

doi: 10.55003/cast.2024.262650
[15]

Rungjindamai N, Trakunjarunkit K, Posalee T, Limpanya D. 2024. Utilization of agricultural waste for the cultivation of pleurotus mushrooms in Thailand. Journal of Pure and Applied Microbiology 18(2):941−50

doi: 10.22207/JPAM.18.2.07
[16]

Bao D, Aimi T, Kitamoto Y. 2005. Cladistic relationships among the Pleurotus ostreatus complex, the Pleurotus pulmonarius complex, and Pleurotus eryngii based on the mitochondrial small subunit ribosomal DNA sequence analysis. Journal of Wood Science 51:77−82

doi: 10.1007/s10086-003-0618-7
[17]

Shnyreva AV, Shtaer OV. 2006. Differentiation of closely related oyster fungi Pleurotus pulmonarius and P. ostreatus by mating and molecular markers. Russian Journal of Genetics 42:539−45

doi: 10.1134/S1022795406050115
[18]

Akinrinola-Akinyemi AO, Asagbra AE, Asiru WB, Lalemi MO, Okere VO, et al. 2017. Viability of Cassava peels spawn production and mushroom cultivation. Open Agriculture 2(1):250−54

doi: 10.1515/opag-2017-0027
[19]

Chai WY, Krishnan UG, Sabaratnam V, Tan JBL. 2021. Assessment of coffee waste in formulation of substrate for oyster mushrooms Pleurotus pulmonarius and Pleurotus floridanus. Future Foods 4:100075

doi: 10.1016/j.fufo.2021.100075
[20]

Patil R, Ramli ANM, Xuan AS, Xin NZ, Azelee NIW, et al. 2024. Unlocking the growth potential: harnessing the power of synbiotics to enhance cultivation of Pleurotus spp. Journal of Zhejiang University: Science B 25(4):293−306

doi: 10.1631/jzus.B2300383
[21]

Garuba T, Abdukkareem KA, Ibrahim IA, Oyebamiji OI, Shoyooye OA, et al. 2017. Influence of substrates on the nutritional quality of Pleurotus pulmonarius and Pleurotus ostreatus. Ceylon Journal of Science 46(1):67

doi: 10.4038/cjs.v46i1.7419
[22]

Velázquez-Cedeño MA, Mata G, Savoie JM. 2002. Waste-reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes. World Journal of Microbiology and Biotechnology 18:201−7

doi: 10.1023/A:1014999616381
[23]

Nussbaumer M, Karl T, Benz JP. 2024. Quantification of fungal biomass in mycelium composites made from diverse biogenic side streams. Fungal Biology and Biotechnology 11(1):20

doi: 10.1186/s40694-024-00189-y
[24]

Blasi A, Verardi A, Lopresto CG, Siciliano S, Sangiorgio P. 2023. Lignocellulosic agricultural waste valorization to obtain valuable products: An overview. Recycling 8(4):61

doi: 10.3390/recycling8040061
[25]

Kohphaisansombat C, Jongpipitaporn Y, Laoratanakul P, Tantipaibulvut S, Euanorasetr J, et al. 2024. Fabrication of mycelium (oyster mushroom)-based composites derived from spent coffee grounds with pineapple fibre reinforcement. Mycology 15(4):665−82

doi: 10.1080/21501203.2023.2273355
[26]

Guna V, Ilangovan M, Anantha Prasad MG, Reddy N. 2017. Water hyacinth: a unique source for sustainable materials and products. ACS Sustainable Chemistry & Engineering 5(6):4478−90

doi: 10.1021/acssuschemeng.7b00051
[27]

Wittner N, Slezsák J, Broos W, Geerts J, Gergely S, et al. 2023. Rapid lignin quantification for fungal wood pretreatment by ATR-FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 285:121912

doi: 10.1016/j.saa.2022.121912
[28]

Aiduang W, Kumla J, Srinuanpan S, Thamjaree W, Lumyong S, et al. 2022. Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species. Journal of Fungi 8(11):1125

doi: 10.3390/jof8111125
[29]

Gan JK, Soh E, Saeidi N, Javadian A, Hebel DE, et al. 2022. Temporal characterization of biocycles of mycelium-bound composites made from bamboo and Pleurotus ostreatus for indoor usage. Scientific Reports 12(1):19362

doi: 10.1038/s41598-022-24070-3
[30]

Thanasannubanant W, Meewan I, Thongchan J, Kitthawee W, Promthep K, et al. 2025. A porosity design of mycelium chitin-glucan scaffold via hydrothermal fabrication and its dual crosslinking for wound healing applications. Carbohydrate Polymer Technologies and Applications 10:100763

doi: 10.1016/j.carpta.2025.100763
[31]

Ritz C, Pipper CB, Streibig JC. 2013. Analysis of germination data from agricultural experiments. European Journal of Agronomy 45:1−6

doi: 10.1016/j.eja.2012.10.003
[32]

Chinaglia S, Esposito E, Tosin M, Pecchiari M, Degli Innocenti F. 2024. Biodegradation of plastics in soil: The effect of water content. Polymer Degradation and Stability 222:110691

doi: 10.1016/j.polymdegradstab.2024.110691
[33]

Appels FVW, Camere S, Montalti M, Karana E, Jansen KMB, et al. 2019. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Materials and Design 161:64−71

doi: 10.1016/j.matdes.2018.11.027
[34]

Aiduang W, Suwannarach N, Kumla J, Thamjaree W, Lumyong S. 2022. Valorization of agricultural waste to produce myco-composite materials from mushroom mycelia and their physical properties. Agriculture and Natural Resources 56(6):1083−90

doi: 10.34044/j.anres.2022.56.6.03
[35]

Bajpai S, Nemade PR. 2023. An integrated biorefinery approach for the valorization of water hyacinth towards circular bioeconomy: A review. Environmental Science and Pollution Research 30(14):39494−536

doi: 10.1007/s11356-023-25830-y
[36]

Yoshida T, Suzuki H. 2010. Current status of woody biomass utilization in ASEAN countries. In Biomass, ed. Momba MNB. UK: IntechOpen. pp. 113–23. doi: 10.5772/9770

[37]

Owusu-Ansah EDJ, Avuglah RK, Harris E, Kyere AY, Amankwaa BD. 2025. Optimizing renewable energy integration: statistical models for grid stability and economic viability. Academia Green Energy 2(2):1−10

doi: 10.20935/AcadEnergy7430
[38]

Nandiyanto ABD, Ragadhita R, Hofifah SN, Al Husaeni DF, Al Husaeni DN, et al. 2024. Progress in the utilization of water hyacinth as effective biomass material. Environment, Development and Sustainability 26(10):24521−68

doi: 10.1007/s10668-023-03655-6
[39]

Rommens W, Maes J, Dekeza N, Inghelbrecht P, Nhiwatiwa T, et al. 2003. The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe): I. Water quality. Archiv für Hydrobiologie 158(3):373−88

doi: 10.1127/0003-9136/2003/0158-0373
[40]

Santibañez-Aguilar JE, Ponce-Ortega JM, González-Campos JB, Serna-González M, El-Halwagi MM. 2013. Synthesis of distributed biorefining networks for the value-added processing of water hyacinth. ACS Sustainable Chemistry & Engineering 1(2):284−305

doi: 10.1021/sc300137a
[41]

Yan SH, Song W, Guo JY. 2017. Advances in management and utilization of invasive water hyacinth (Eichhornia crassipes) in aquatic ecosystems – a review. Critical Reviews in Biotechnology 37(2):218−28

doi: 10.3109/07388551.2015.1132406
[42]

Irbe I, Loris GD, Filipova I, Andze L, Skute M. 2022. Characterization of self-growing biomaterials made of fungal mycelium and various lignocellulose-containing ingredients. Materials 15(21):7608

doi: 10.3390/ma15217608
[43]

Antinori ME, Ceseracciu L, Mancini G, Heredia-Guerrero JA, Athanassiou A. 2020. Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials. ACS Applied Bio Materials 3(2):1044−51

doi: 10.1021/acsabm.9b01031
[44]

Hoa HT, Wang CL. 2015. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43(1):14−23

doi: 10.5941/MYCO.2015.43.1.14
[45]

Peng L, Yi J, Yang X, Xie J, Chen C. 2023. Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts. Journal of Bioresources and Bioproducts 8(1):78−89

doi: 10.1016/j.jobab.2022.11.005
[46]

Horisawa S, Sunagawa M, Tamai Y, Matsuoka Y, Miura T, et al. 1999. Biodegradation of nonlignocellulosic substances II: physical and chemical properties of sawdust before and after use as artificial soil. Journal of wood science 45:492−7

doi: 10.1007/BF00538959
[47]

Arivendan A, Jebas Thangiah WJ, Irulappasamy S, Chrish B. 2022. Study on characterization of water hyacinth (Eichhornia crassipes) novel natural fiber as reinforcement with epoxy polymer matrix material for lightweight applications. Journal of Industrial Textiles 51:8157S−8174S

doi: 10.1177/15280837211067281
[48]

Manan S, Atta OM, Shahzad A, Ul-Islam M, Ullah MW, et al. 2022. Applications of fungal mycelium-based functional biomaterials. In Fungal Biopolymers and Biocomposites: Prospects and Avenues, eds. Deshmukh SK, Deshpande MV, Sridhar, KR. Singapore: Springer. pp. 147–68. doi: 10.1007/978-981-19-1000-5_9

[49]

Sisti L, Gioia C., Totaro G, Verstichel S, Cartabia M, et al. 2021. Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Industrial Crops and Products 170:113742

doi: 10.1016/j.indcrop.2021.113742
[50]

Enriquez-Medina I, Rodas-Ortiz I, Bedoya-Garcia I, Velasquez-Godoy A, Alvarez-Vasco C, et al. 2024. Bridging gap between agro-industrial waste, biodiversity and mycelium-based biocomposites: Understanding their properties by multiscale methodology. Journal of Bioresources and Bioproducts 9(4):495−507

doi: 10.1016/j.jobab.2024.07.001
[51]

Dahmane EM, Taourirte M, Eladlani N, Rhazi M. 2014. Extraction and characterization of chitin and chitosan from Parapenaeus longirostris from Moroccan local sources. International Journal of Polymer Analysis and Characterization 19(4):342−51

doi: 10.1080/1023666X.2014.902577
[52]

Etinosa OP. 2019. Design and Testing of Mycelium Biocomposite. Doctoral dissertation. African University of Science and Technology, Nigeria

[53]

Alaneme KK, Anaele JU, Oke TM, Kareem SA, Adediran M, et al. 2023. Mycelium based composites: A review of their bio-fabrication procedures, material properties and potential for green building and construction applications. Alexandria Engineering Journal 83:234−50

doi: 10.1016/j.aej.2023.10.012
[54]

Mat Zin MI, Jimat DN, Wan Nawawi WMF. 2022. Physicochemical properties of fungal chitin nanopaper from shiitake (L. edodes), enoki (F. velutipes) and oyster mushrooms (P. ostreatus). Carbohydrate Polymers 281:119038

doi: 10.1016/j.carbpol.2021.119038
[55]

Yang ZJ, Zhang F, Still B, White M, Amstislavski P. 2017. Physical and mechanical properties of fungal mycelium-based biofoam. Journal of Materials in Civil Engineering 29(7):04017030

doi: 10.1061/(ASCE)MT.1943-5533.0001866
[56]

Elsacker E, Vandelook S, Brancart J, Peeters E, De Laet L. 2019. Mechanical, physical, and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS One 14(7):e0213954

doi: 10.1371/journal.pone.0213954
[57]

Xiong ZY. 2007. Experimental study on mechanical behaviors of Expanded Polystyrene (EPS). Thesis. Xiangtan University, Xiangtan

[58]

López-Nava JA, Méndez-González J, Ruelas-Chacón X, Nájera-Luna JA. 2016. Assessment of edible fungi and films bio-based material simulating expanded polystyrene. Materials and Manufacturing Processes 31(8):1085−90

doi: 10.1080/10426914.2015.1070420
[59]

Hubbe MA, Gardner DJ, Shen W. 2015. Contact angles and wettability of cellulosic surfaces: a review of proposed mechanisms and test strategies. BioResources 10(4):8379−415

doi: 10.15376/biores.10.4.hubbe_gardner_shen
[60]

Sun W, Tajvidi M, Hunt CG, Howell C. 2020. All-natural smart mycelium surface with tunable wettability. ACS Applied Bio Materials 4(1):1015−22

doi: 10.1021/acsabm.0c01449
[61]

Duan B, Gao H, He M, Zhang L. 2014. Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS applied materials & interfaces 6(22):19933−42

doi: 10.1021/am505414y
[62]

Ralston J, Fornasiero D, Mishchuk N. 2001. The hydrophobic force in flotation-a critique. Colloids and Surfaces A: Physicochemical and Engineering Aspects 192(1-3):39−51

doi: 10.1016/S0927-7757(01)00715-4
[63]

Lu Z, Jónsdóttir F, Arason S, Margeirsson B. 2023. Assessment of compressive and flexural properties and stacking strength of expanded polystyrene boxes: experimental and simulation study. Applied Sciences 13(10):5852

doi: 10.3390/app13105852
[64]

Budlayan MLM, Patricio JN, Lagare-Oracion JP, Arco SD, Alguno AC, et al. 2021. Improvised centrifugal spinning for the production of polystyrene microfibers from waste expanded polystyrene foam and its potential application for oil adsorption. Journal of Engineering and Applied Science 68:25

doi: 10.1186/s44147-021-00030-y
[65]

Gouw TL. 1990. Expanded polystyrene for road embankment on soft clay. 4th Indonesian Annual Conference on Road Engineering Jakarta, November 19−21, 1990. vol. 7. www.researchgate.net/publication/301694480_Expanded_Polystyrene_for_Road_Embankment_on_Soft_Clay

[66]

Balasubramanian D, Arunachalam K, Das AK, Arunachalam A. 2012. Decomposition and nutrient release of Eichhornia crassipes (Mart.) Solms. under different trophic conditions in wetlands of eastern Himalayan foothills. Ecological Engineering 44:111−22

doi: 10.1016/j.ecoleng.2012.03.002
[67]

Monga O, Garnier P, Pot V, Coucheney E, Nunan N, et al. 2014. Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion-based model MOSAIC. Biogeosciences 11(8):2201−9

doi: 10.5194/bg-11-2201-2014
[68]

Oragwu IP, Igwe IO, Nwankpa C. 2021. Bio-based plastics and their degradation by soil microbes. IOSR Journal of Polymer and Textile Engineering 8(1):16−25

[69]

Yang L, Park D, Qin Z. 2021. Material function of mycelium-based bio-composite: a review. Frontiers in Materials 8:737377

doi: 10.3389/fmats.2021.737377
[70]

Wattanavichean N, Phanthuwongpakdee J, Koedrith P, Laoratanakul P, Thaithatkul B, et al. 2025. Mycelium-Based Breakthroughs: Exploring Commercialization, Research, and Next-Gen Possibilities. Circular Economy and Sustainability (In press)