[1]

Lin D. 2017. Research progress on the origin and classification of cucumber plants. China Cucurbits and Vegetables 30:1−3

doi: 10.16861/j.cnki.zggc.20170707.002
[2]

Wang X. 2011. Vegetable cultivation science: northern edition (4th edition). Beijing: China Agriculture Press. pp. 364−410

[3]

Ma D, Pang J, Huo Z. 1997. Effects of weak light treatment on the photosynthesis and respiration of cucumber seedlings. Journal of Henan Agricultural University 31(3):248−50

[4]

Li D, Yu F, Zhang Y, Hu K, Dai D, et al. 2023. Integrative analysis of different low-light-tolerant cucumber lines in response to low-light stress. Frontiers in Plant Science 13:1093859

doi: 10.3389/fpls.2022.1093859
[5]

Bei Z, L P, Wan Z, He S, Li X. 1998. Effects of low light on flower fall and photosynthesis of pepper. Journal of Nuclear Agricultural Sciences 12(5):314−16

[6]

Li D, Cui H, Liu F, Wang R, Sheng Y, et al. 2016. Evaluation and analysis of resistance to cucumber downy mildew under low light stress. Acta Phytophylacica Sinica 43:621−26

doi: 10.13802/j.cnki.zwbhxb.2016.04.014
[7]

Tian Z, Jahn M, Xiao D, Obel HO, Yang F, et al. 2021. Genetic and transcriptomic analysis reveal the molecular basis of photoperiod-regulated flowering in xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannesis Qi et Yuan). Genes 12:1064

doi: 10.3390/genes12071064
[8]

Song S, Hao Q, Su L, Xia S, Zhang R, et al. 2023. Flowering locus T (FT) gene regulates short-day flowering in low latitude Xishuangbanna cucumber (Cucumis sativus var. xishuangbannanesis). Vegetable Research 3:15

doi: 10.48130/VR-2023-0015
[9]

Zhou X, Tan Z, Zhou Y, Guo S, Sang T, et al. 2022. Physiological mechanism of strigolactone enhancing tolerance to low light stress in cucumber seedlings. BMC Plant Biology 22:30

doi: 10.1186/s12870-021-03414-7
[10]

Ghorbel M, Brini F, Brestic M, Landi M. 2023. Interplay between low light and hormone-mediated signaling pathways in shade avoidance regulation in plants. Plant Stress 9:100178

doi: 10.1016/j.stress.2023.100178
[11]

Wang J, Gai J. 1998. Identification of major gene and polygene mixed inheritance model of quantitative traits by using joint analysis of P1, F1, P2, F2 and F2: 3 generations. Crop Science 24:651−59

[12]

Dong S, Zhang S, Wei S, Liu Y, Li C, et al. 2020. Identification of quantitative trait loci controlling high-temperature tolerance in cucumber (Cucumis sativus L.) seedlings. Plants 9:1155

doi: 10.3390/plants9091155
[13]

Gai J. 2006. Segregation analysis on genetic dystem of quantitative traits in plants. Frontiers of Biology in China 1:85−92

doi: 10.1007/s11515-005-0001-8
[14]

Zheng R, Zhou Y, Lv D, Tong B, Luo H. 2024. Genetic analysis of stay green related traits in maize with major gene plus polygenes mixed model. PLoS One 19(10):e0303602

doi: 10.1371/journal.pone.0303602
[15]

Abbas HMK, Zhou Y, Huang H, ul Qamar MT, Wang M, et al. 2022. QTL mapping, whole genome resequencing, and marker-assisted selection provide basics of early flowering in pumpkin. Plant Breeding 141:266−76

doi: 10.1111/pbr.12996
[16]

Cao Q, Zhang Y, Wang Y, Yang G, Sun X, et al. 2018. Genetic analysis of internode length using mixed major-gene plus polygene inheritance model in Cucumis sativus. Journal of Agricultural Biotechnology 26(2):205−12

doi: 10.3969/j.issn.1674-7968.2018.02.003
[17]

Miao Y, Sui Y, Jian X. 2015. Genetic analysis of male floral traits in cucumber. Plants of GuangXi 35:704−08

doi: 10.11931/guihaia.gxzw201408012
[18]

Chen C, Cui Q, Chen H, Tian Y. 2015. Genetic analysis of cucumber subgynoecious trait using major gene plus polygene mixed genetic model. Chinese Journal of Tropical Crops 36(10):1769−73

doi: 10.3969/j.issn.1000-2561.2015.10.007
[19]

Zhou G, Chen C, Liu X, Yang K, Wang C, et al. 2022. The formation of hollow trait in cucumber (Cucumis sativus L.) fruit is controlled by CsALMT2. International Journal of Molecular Sciences 23:6173

doi: 10.3390/ijms23116173
[20]

Li D, Ma G, Tian L, Liu F. 2014. Inheritance of yellow line relative length of cucumber fruit. Journal of Northwest A&F University (Natural Science Edition) 42(9):113−18

doi: 10.13207/j.cnki.jnwafu.2014.09.019
[21]

Zhang Y, Cao Q, Li L, Wang X, Wang Y, et al. 2015. Genetic analysis of leaf size using mixed major-gene plus polygene inheritance model in Cucumis sativus. Acta Horticulturae Sinica 42(05):897−906

doi: 10.16420/j.issn.0513-353x.2014-1126
[22]

Kumar S, Banks TW, Cloutier S. 2012. SNP discovery through next-generation sequencing and its applications. International Journal of Plant Genomics 2012:831460

doi: 10.1155/2012/831460
[23]

Xu X, Xu R, Zhu B, Yu T, Qu W, et al. 2014. A high-density genetic map of cucumber derived from specific length amplified fragment sequencing (SLAF-seq). Frontiers in Plant Science 5:768

doi: 10.3389/fpls.2014.00768
[24]

Zhang X, Wang G, Dong T, Chen B, Du H, et al. 2019. High-density genetic map construction and QTL mapping of first flower node in pepper (Capsicum annuum L.). BMC Plant Biology 19:167

doi: 10.1186/s12870-019-1753-7
[25]

Chen K, Dai D, Wang L, Yang L, Li D, et al. 2023. SLAF marker based QTL mapping of fruit-related traits reveals a major-effect candidate locus ff2.1 for flesh firmness in melon. Journal of Integrative Agriculture 22:3331−45

doi: 10.1016/j.jia.2023.02.014
[26]

Liu Z, Bao D, Liu D, Zhang Y, Ashraf MA, et al. 2016. Construction of a genetic linkage map and QTL analysis of fruit-related traits in an F1 red Fuji × Hongrou apple hybrid. Open Life Sciences 11:487−97

doi: 10.1515/biol-2016-0063
[27]

Wei Q, Wang W, Hu T, Hu H, Wang J, et al. 2020. Construction of a SNP-based genetic map using SLAF-seq and QTL analysis of morphological traits in eggplant. Frontiers in Genetics 11:178

doi: 10.3389/fgene.2020.00178
[28]

Cui J, Cheng J, Wang G, Tang X, Wu Z, et al. 2015. QTL analysis of three flower-related traits based on an interspecific genetic map of Luffa. Euphytica 202:45−54

doi: 10.1007/s10681-014-1208-z
[29]

Sato H, Heang D, Sassa H, Koba T. 2009. Identification and characterization of FT/TFL1 gene family in cucumber. Breeding Science 59:3−11

doi: 10.1270/jsbbs.59.3
[30]

Bo K, Ma Z, Chen J, Weng Y. 2015. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theoretical and Applied Genetics 128:25−39

doi: 10.1007/s00122-014-2410-z
[31]

Pan Y, Qu S, Bo K, Gao M, Haider KR, et al. 2017. QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theoretical and Applied Genetics 130:1531−48

doi: 10.1007/s00122-017-2908-2
[32]

Sheng Y, Pan Y, Li Y, Yang L, Weng Y. 2020. Quantitative trait loci for fruit size and flowering time-related traits under domestication and diversifying selection in cucumber (Cucumis sativus). Plant Breeding 139:176−91

doi: 10.1111/pbr.12754
[33]

Zhao W, Gu R, Che G, Cheng Z, Zhang X. 2018. CsTFL1b may regulate the flowering time and inflorescence architecture in cucumber (Cucumis sativus L.). Biochemical and Biophysical Research Communications 499:307−13

doi: 10.1016/j.bbrc.2018.03.153
[34]

Silva CS, Puranik S, Round A, Brennich M, Jourdain A, et al. 2016. Evolution of the plant reproduction master regulators LFY and the MADS transcription factors: the role of protein structure in the evolutionary development of the flower. Frontiers in Plant Science 6:1193

doi: 10.3389/fpls.2015.01193
[35]

Qi H, Lin Y, Ren Q, Wang Y, Xiong F, et al. 2019. RNA splicing of FLC modulates the transition to flowering. Frontiers in Plant Science 10:1625

doi: 10.3389/fpls.2019.01625
[36]

Sri T, Gupta B, Tyagi S, Singh A. 2020. Homeologs of Brassica SOC1, a central regulator of flowering time, are differentially regulated due to partitioning of evolutionarily conserved transcription factor binding sites in promoters. Molecular Phylogenetics and Evolution 147:106777

doi: 10.1016/j.ympev.2020.106777
[37]

Gao M, Luan F, Zhu Z. 2012. Genetic analysis of flowering stage of the first female flower of recombinant inbred lines in melon. China Vegetables 2012:24−29

[38]

Li Q, Yang J, Wang D, Wu S, Wang X. 2023. Genetic analysis of Chinese pumpkin (Cucurbita moschata Duch.) strong femaleness. China Vegetables 2023:40−44

doi: 10.19928/j.cnki.1000-6346.2023.0004
[39]

Guo Z, Li Z, Liu Y, An Z, Peng M, et al. 2020. MRG1/2 histone methylation readers and HD2C histone deacetylase associate in repression of the florigen gene FT to set a proper flowering time in response to day-length changes. New Phytologist 227:1453−66

doi: 10.1111/nph.16616
[40]

Luo M, Wang Y, Liu X, Yang S, Lu Q, et al. 2012. HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. Journal of Experimental Botany 63:3297−306

doi: 10.1093/jxb/ers059
[41]

Kang MJ, Jin HS, Noh YS, Noh B. 2015. Repression of flowering under a noninductive photoperiod by the HDA9-AGL19-FT module in Arabidopsis. New Phytologist 206:281−94

doi: 10.1111/nph.13161
[42]

Pérez-Pascual D, Jiménez-Guillen D, Villanueva-Alonzo H, Souza-Perera R, Godoy-Hernández G, et al. 2018. Ectopic expression of the Coffea canephora SERK1 homolog-induced differential transcription of genes involved in auxin metabolism and in the developmental control of embryogenesis. Physiologia Plantarum 163:530−51

doi: 10.1111/ppl.12709
[43]

Zhuo J, Tang Q, Pei J, Ma H, Hou D, et al. 2024. F-box protein PeFKF1 promotes flowering by cooperating with PeID1 and PeHd1 in Phyllostachys edulis. International Journal of Biological Macromolecules 283:137593

doi: 10.1016/j.ijbiomac.2024.137593
[44]

Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8(19):4321−26

doi: 10.1093/nar/8.19.4321
[45]

Li R, Li Y, Kristiansen K , Wang J. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics 24:713−14

doi: 10.1093/bioinformatics/btn025
[46]

Cao X, Liu B, Zhang Y. 2013. SEA: a software package of segregation analsis of quantitative traits in plants. Journal of Nanjing Agricultural University 36(6):1−6