[1]

Ha STT, In BC. 2022. Combined nano silver, α-aminoisobutyric acid, and 1-methylcyclopropene treatment delays the senescence of cut roses with different ethylene sensitivities. Horticulturae 8:482

doi: 10.3390/horticulturae8060482
[2]

Kumar N, Srivastava GC, Dixit K. 2008. Hormonal regulation of flower senescence in roses (Rosa hybrida L.). Plant Growth Regulation 55:65−71

doi: 10.1007/s10725-008-9259-6
[3]

Tahir I, Nisar S, Dar RA. 2019. Gibberellin and cytokinins modulate flower senescence and longevity in Nicotiana plumbaginifolia. Acta Horticulturae 1263:469−76

doi: 10.17660/actahortic.2019.1263.6
[4]

Li J, Li C. 2019. Seventy-year major research progress in plant hormones by Chinese scholars. Scientia Sinica Vitae 49:1227−1281

[5]

Reid MS, Jiang CZ. 2012. Postharvest biology and technology of cut flowers and potted plants. Horticultural Reviews 40:1−54

doi: 10.1002/9781118351871.ch1
[6]

Lü P, Zhang C, Liu J, Liu X, Jiang G, et al. 2014. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence. The Plant Journal 78:578−90

doi: 10.1111/tpj.12494
[7]

Nukui H, Kudo S, Yamashita A, Satoh S. 2004. Repressed ethylene production in the gynoecium of long-lasting flowers of the carnation 'White Candle': role of the gynoecium in carnation flower senescence. Journal of Experimental Botany 55:641−50

doi: 10.1093/jxb/erh081
[8]

Wang X, Zhang C, Wang Y, Dong L. 2012. Isolation and expression of 9-cis epoxycarotenoid dioxygenase gene in tree peony. Acta Horticulturae Sinica 39:2033−44

[9]

Ke Y, Zhang YB, Zhang FP, Yang D, Wang Q, et al. 2024. Monocots and eudicots have more conservative flower water use strategies than basal angiosperms. Plant Biology 4:621−32

doi: 10.1111/plb.13637
[10]

van Doorn WG, Woltering EJ. 2008. Physiology and molecular biology of petal senescence. Journal of Experimental Botany 59:453−80

doi: 10.1093/jxb/erm356
[11]

Swift ML, Sell C, Azizkhan-Clifford J. 2022. DNA damage-induced degradation of Sp1 promotes cellular senescence. GeroScience 44:683−98

doi: 10.1007/s11357-021-00456-5
[12]

Islam MF, Yamatani H, Takami T, Kusaba M, Sakamoto W. 2024. Characterization of organelle DNA degradation mediated by DPD1 exonuclease in the rice genome-edited line. Plant Molecular Biology 114:71

doi: 10.1007/s11103-024-01452-x
[13]

Shahri W, Tahir I. 2014. Flower senescence: some molecular aspects. Planta 239:277−97

doi: 10.1007/s00425-013-1984-z
[14]

Xu Y, Hanson MR. 2000. Programmed cell death during pollination-induced petal senescence in petunia. Plant Physiology 122:1323−34

doi: 10.1104/pp.122.4.1323
[15]

Jhanji S, Kaur G, Kaur R, Dhatt UK. 2023. Physiological and biochemical changes during flower development and senescence in Chrysanthemum and Gladiolus. Acta Physiologiae Plantarum 45:14

doi: 10.1007/s11738-022-03486-4
[16]

Aalifar M, Aliniaeifard S, Arab M, Mehrjerdi MZ, Daylami SD, et al. 2020. Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system. Frontiers in Plant Science 11:511

doi: 10.3389/fpls.2020.00511
[17]

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30

doi: 10.1016/j.plaphy.2010.08.016
[18]

Sun J, Guo H, Tao J. 2022. Effects of harvest stage, storage, and preservation technology on postharvest ornamental value of cut peony (Paeonia lactiflora) flowers. Agronomy 12:230

doi: 10.3390/agronomy12020230
[19]

Zhao D, Cheng M, Tang W, Liu D, Zhou, S, et al. 2018. Nano-silver modifies the vase life of cut herbaceous peony (Paeonia lactiflora Pall.) flowers. Protoplasma 255:1001−13

doi: 10.1007/s00709-018-1209-1
[20]

Han J. 2024. Effects of different preservative formulations on cut Paeonia lactiflora flowers. China Fruit & Vegetable 44:7−10

doi: 10.19590/j.cnki.1008-1038.2024.07.002
[21]

Liu G, Song Y, Wen Z, Li X, Ma S, et al. 2023. Effect of low temperature storage and biocide treatment on preservation of peony cut flowers. Journal of Shandong Forestry Science and Technology 53:76−79

doi: 10.3969/j.issn.1002-2724.2023.01.015
[22]

Ji F, Ma Y, Qi S, Guo X, Chen J. 2022. Cloning and functional analysis of peony PlSVP gene in regulating flowering. Acta Horticulturae Sinica 49:2367−76

doi: 10.16420/j.issn.0513-353x.2021-1253
[23]

Ji X, Wang M, Xu Z, Wang K, Sun D, et al. 2022. PlMYB308 regulates flower senescence by modulating ethylene biosynthesis in herbaceous peony. Frontiers in Plant Science 13:872442

doi: 10.3389/fpls.2022.872442
[24]

Ji X, Yuan Y, Bai Z, Wang M, Niu L, et al. 2023. PlZFP mediates the combinatorial interactions of abscisic acid with gibberellin and ethylene during flower senescence in cut herbaceous peony. Postharvest Biology and Technology 195:112130

doi: 10.1016/j.postharvbio.2022.112130
[25]

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248−54

doi: 10.1016/0003-2697(76)90527-3
[26]

Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125:189−98

doi: 10.1016/0003-9861(68)90654-1
[27]

Wissemann KW, Montgomery MW. 1985. Purification of d'Anjou pear (Pyrus communis L.) polyphenol oxidase. Plant Physiology 78(2):256

doi: 10.1104/pp.78.2.256
[28]

Hassan MJ , Shao G , Zhang G. 2005. Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. Journal of Plant Nutrition 28(7):1259−70

doi: 10.1081/PLN-200063298
[29]

Beyer WF Jr, Fridovich I. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry 161:559−66

doi: 10.1016/0003-2697(87)90489-1
[30]

Fang Z, Hu Y, Liu D, Chen J, Ye X. 2008. Changes of phenolic acids and antioxidant activities during potherb mustard (Brassica juncea, Coss.) pickling. Food Chemistry 108:811−17

doi: 10.1016/j.foodchem.2007.11.033
[31]

Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28:25−30

doi: 10.1016/S0023-6438(95)80008-5
[32]

Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical Biochemistry 239:70−76

doi: 10.1006/abio.1996.0292
[33]

Chang X, Donnelly L, Sun D, Rao J, Reid MS, et al. 2014. A petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in ffower senescence. PLoS One 9:e88320

doi: 10.1371/journal.pone.0088320
[34]

Serek M, Woltering EJ, Sisler EC, Frello S, Sriskandarajah S. 2006. Controlling ethylene responses in flowers at the receptor level. Biotechnology Advances 24:368−81

doi: 10.1016/j.biotechadv.2006.01.007
[35]

Cai L, Zhang X, Shen H, Gao J. 2002. Effects of ethylene and its inhibitors on flower opening and senescence of cut roses. Horticultural Plant Journal 29:467−72

doi: 10.3321/j.issn:0513-353X.2002.05.015
[36]

Gao J, Zhang X, Huang M, Ye X, Sun Z. 1997. Ethylene changes in cut rose during flowering and senescence. Horticultural Plant Journal 1997:39−73

[37]

Jia P, Zhou L, Guo W, Wang L, Dong L. 2008. Postharvest behavior and endogenous ethylene pattern of Paeonia suffruticosa cut flowers. Acta Horticulturae 768:445−50

doi: 10.17660/ActaHortic.2008.768.58
[38]

Serrano M, Amorós A, Pretel MT, Martínez-Madrid MC, Romojaro F. 2001. Preservative solutions containing boric acid delay senescence of carnation flowers. Postharvest Biology and Technology 23:133−42

doi: 10.1016/S0925-5214(01)00108-9
[39]

Ying Z, Chen K. 1990. Physiological effects of silver thiosulfate, an ethylene antagonist. Plant Physiology Journal 1990:63−64,26

[40]

Onoue T, Mikami M, Yoshioka T, Hashiba T, Satoh S. 2000. Characteristics of the inhibitory action of 1,1-dimethyl-4-(phenylsulfonyl) semicarbazide (DPSS) on ethylene production in carnation (Dianthus caryophyllus L.) flowers. Plant Growth Regulation 30:201−07

doi: 10.1023/A:1006324715438
[41]

Cavaiuolo M, Cocetta G, Ferrante A. 2013. The antioxidants changes in ornamental flowers during development and senescence. Antioxidants 2:132−155

doi: 10.3390/antiox2030132
[42]

Sood S, Nagar PK. 2003. The effect of polyamines on leaf senescence in two diverse rose species. Plant Growth Regulation 39:155−60

doi: 10.1023/A:1022514712295
[43]

Pun UK, Ichimura K. 2003. Role of sugars in senescence and biosynthesis of ethylene in cut flowers. Japan Agricultural Research Quarterly 37:219−24

doi: 10.6090/jarq.37.219
[44]

Dar RA, Nisar S, Tahir I. 2021. Ethylene: a key player in ethylene sensitive flower senescence: a review. Scientia Horticulturae 290:110491

doi: 10.1016/j.scienta.2021.110491
[45]

Hoeberichts FA, van Doorn WG, Vorst O, Hall RD, van Wordragen MF. 2007. Sucrose prevents up-regulation of senescence-associated genes in carnation petals. Journal of Experimental Botany 58:2873−85

doi: 10.1093/jxb/erm076
[46]

Pun UK, Yamada T, Azuma M, Tanase K, Yoshioka S, et al. 2016. Effect of sucrose on sensitivity to ethylene and enzyme activities and gene expression involved in ethylene biosynthesis in cut carnations. Postharvest Biology and Technology 121:151−58

doi: 10.1016/j.postharvbio.2016.08.001
[47]

van Doorn WG. 2004. Is petal senescence due to sugar starvation? Plant Physiology 134:35−42

doi: 10.1104/pp.103.033084
[48]

Yuan Y, Qian H, Wang Y, Shi Y, Tang D. 2012. Hormonal regulation of Freesia cut flowers and FhACS1. Scientia Horticulturae 143:75−81

doi: 10.1016/j.scienta.2012.06.012
[49]

Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, et al. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9:285

doi: 10.3390/biom9070285
[50]

Ma QJ, Sun MH, Lu J, Liu YJ, Hu DG, et al. 2017. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes. Plant Physiology 174:2348−2362

doi: 10.1104/pp.17.00502
[51]

Gurmani AR, Bano A, Khan SU, Din J, Zhang JL. 2011. Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa L.). Australian Journal of Crop Science 5:1278−85

[52]

Chatbanyong R, Wisutiamonkul A, Ketsa S. 2022. Influence of sucrose feeding on sugar metabolism and invertase activity in cut Dendrobium flowers. Agriculture and Natural Resources 56:1051−58

doi: 10.34044/j.anres.2022.56.5.19
[53]

Lou X, Anwar M, Wang Y, Zhang H, Ding J. 2021. Impact of inorganic salts on vase life and postharvest qualities of the cut flower of Perpetual Carnation. Brazilian Journal of Biology 81:228−36

doi: 10.1590/1519-6984.221502
[54]

Rahbar FG, Vaziri A, Asil MH, Sasani ST, Olfati J. 2023. Effects of humic acid on antioxidant defense system and senescence-related gene expression in leaves of longiflorum × asiatic of Lilies (LA Lilium Hybrid). Journal of Soil Science and Plant Nutrition 23:3500−07

doi: 10.1007/s42729-023-01266-8
[55]

Tripath SK, Tuteja N. 2007. Integrated signaling in flower senescence: an overview. Plant Signaling & Behavior 2:437−45

doi: 10.4161/psb.2.6.4991