[1]

Wilson RA, Sangha MK, Banga SS, Atwal AK, Gupta S. 2014. Heat stress tolerance in relation to oxidative stress and antioxidants in Brassica juncea. Journal of Environmental Biology 35:383−87

[2]

Bita CE, Gerats T. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4:273

doi: 10.3389/fpls.2013.00273
[3]

Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK. 2007. Stress-induced morphogenic responses: growing out of trouble? Trends in Plant Science 12:98−105

doi: 10.1016/j.tplants.2007.01.004
[4]

Jiang Y, Huang B. 2001. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science 41:436−42

doi: 10.2135/cropsci2001.412436x
[5]

Rossi S, Huang B. 2022. Sitosterol-mediated antioxidant regulation to enhance heat tolerance in creeping bentgrass. Journal of the American Society for Horticultural Science 147:18−24

doi: 10.21273/JASHS05107-21
[6]

Zhang H, Zhang X, Meng M, Di H, Wang J. 2023. Populus trichocarpa PtHSFA4a enhances heat tolerance by regulating expression of APX1 and HSPs. Forests 14:2028

doi: 10.3390/f14102028
[7]

Fortunato S, Lasorella C, Dipierro N, Vita F, de Pinto MC. 2023. Redox signaling in plant heat stress response. Antioxidants 12:605

doi: 10.3390/antiox12030605
[8]

Rahman MM, Mostofa MG, Keya SS, Ghosh PK, Abdelrahman M, et al. 2024. Jasmonic acid priming augments antioxidant defense and photosynthesis in soybean to alleviate combined heat and drought stress effects. Plant Physiology and Biochemistry 206:108193

doi: 10.1016/j.plaphy.2023.108193
[9]

Li M, Wang M, Chen J, Wu J, Xia Z. 2023. Sulfur dioxide improves the thermotolerance of maize seedlings by regulating salicylic acid biosynthesis. Ecotoxicology and Environmental Safety 254:114746

doi: 10.1016/j.ecoenv.2023.114746
[10]

Li XY, Wang Y, Dai Y, He Y, Li CX, et al. 2021. The transcription factors of tall fescue in response to temperature stress. Plant Biology 23:89−99

doi: 10.1111/plb.13201
[11]

Sun T, Wang W, Hu X, Meng L, Xiang L, et al. 2024. HSFA3 functions as a positive regulator of HSFA2a to enhance thermotolerance in perennial ryegrass. Plant Physiology and Biochemistry 208:108512

doi: 10.1016/j.plaphy.2024.108512
[12]

Xie Y, Ye Y. 2024. Maize Class C heat shock factor ZmHSF21 improves the high temperature tolerance of transgenic Arabidopsis. Agriculture 14:1524

doi: 10.3390/agriculture14091524
[13]

Zhao D, Cheng Z, Qian Y, Hu Z, Tang Y, et al. 2025. PlWRKY47 coordinates with cytosolic glyceraldehyde-3-phosphate dehydrogenase 2 gene to improve thermotolerance through inhibiting reactive oxygen species generation in herbaceous peony. Plant, Cell & Environment 48:226−43

doi: 10.1111/pce.15143
[14]

Shahnejat-Bushehri S, Mueller-Roeber B, Balazadeh S. 2012. Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signaling & Behavior 7:1518−21

doi: 10.4161/psb.22092
[15]

Li Q, Li R, He F, Yang Z, Yu J. 2022. Growth and physiological effects of chitosan on heat tolerance in creeping bentgrass (Agrostis stolonifera). Grass Research 2:6

doi: 10.48130/gr-2022-0006
[16]

Jiang Y. 2023. Application of gamma-aminobutyric acid and nitric oxide on turfgrass stress resistance: current knowledge and perspectives. Grass Research 3:3

doi: 10.48130/gr-2023-0003
[17]

Liu M, Shan Q, Ding E, Gu T, Gong B. 2023. Karrikin increases tomato cold tolerance via strigolactone and the abscisic acid signaling network. Plant Science 332:111720

doi: 10.1016/j.plantsci.2023.111720
[18]

Shah FA, Ni J, Tang C, Chen X, Kan W, et al. 2021. Karrikinolide alleviates salt stress in wheat by regulating the redox and K+/Na+ homeostasis. Plant Physiology and Biochemistry 167:921−33

doi: 10.1016/j.plaphy.2021.09.023
[19]

Sharifi P, Bidabadi SS. 2020. Protection against salinity stress in black cumin involves karrikin and calcium by improving gas exchange attributes, ascorbate–glutathione cycle and fatty acid compositions. SN Applied Sciences 2:2010

doi: 10.1007/s42452-020-03843-3
[20]

Tan ZZ, Wang YT, Zhang XX, Jiang HY, Li Y, et al. 2023. Karrikin1 enhances drought tolerance in creeping bentgrass in association with antioxidative protection and regulation of stress-responsive gene expression. Agronomy 13:675

doi: 10.3390/agronomy13030675
[21]

Shah FA, Wei X, Wang Q, Liu W, Wang D, et al. 2020. Karrikin improves osmotic and salt stress tolerance via the regulation of the redox homeostasis in the oil plant Sapium sebiferum. Frontiers in Plant Science 11:216

doi: 10.3389/fpls.2020.00216
[22]

Wang L, Waters MT, Smith SM. 2018. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment. New Phytologist 219:605−18

doi: 10.1111/nph.15192
[23]

Carbonnel S, Das D, Varshney K, Kolodziej MC, Villaécija-Aguilar JA, et al. 2020. The karrikin signaling regulator SMAX1 controls Lotus japonicus root and root hair development by suppressing ethylene biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 117:21757−65

doi: 10.1073/pnas.2006111117
[24]

Meng Y, Shuai H, Luo X, Chen F, Zhou W, et al. 2017. Karrikins: regulators involved in phytohormone signaling networks during seed germination and seedling development. Frontiers in Plant Science 7:2021

doi: 10.3389/fpls.2016.02021
[25]

Singh S, Uddin M, Khan MMA, Chishti AS, Singh S, et al. 2023. The role of plant-derived smoke and karrikinolide in abiotic stress mitigation: an Omic approach. Plant Stress 7:100147

doi: 10.1016/j.stress.2023.100147
[26]

Abdelrahman M, Mostofa MG, Tran CD, El-Sayed M, Li W, et al. 2023. The karrikin receptor karrikin insensitive2 positively regulates heat stress tolerance in Arabidopsis thaliana. Plant and Cell Physiology 63:1914−26

doi: 10.1093/pcp/pcac112
[27]

Shi Y, Zhang J, Li H, Li M, Huang B. 2018. Butanediol-enhanced heat tolerance in Agrostis stolonifera in association with alteration in stress-related gene expression and metabolic profiles. Environmental and Experimental Botany 153:209−17

doi: 10.1016/j.envexpbot.2018.06.002
[28]

Xu Q, Huang B. 2004. Antioxidant metabolism associated with summer leaf senescence and turf quality decline for creeping bentgrass. Crop Science 44:553−60

doi: 10.2135/cropsci2004.5530
[29]

Hoagland DR, Arnon DI. 1950. The water culture method for growing plants without soil. California Agricultural Experiment Station Circular 347:1−32

[30]

Barrs HD, Weatherley PE. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences 15:413−28

doi: 10.1071/BI9620413
[31]

Blum A, Ebercon A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21:43−47

doi: 10.2135/cropsci1981.0011183X002100010013x
[32]

Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22:867−80

doi: 10.1093/oxfordjournals.pcp.a076232
[33]

Beyer WF, Fridovich I. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry 161:559−66

doi: 10.1016/0003-2697(87)90489-1
[34]

Maehly AC, Chance B. 1954. The assay of catalases and peroxidases. Methods of Biochemical Analysis 1:357−424

doi: 10.1002/9780470110171.ch14
[35]

Li Q, Bian Y, Li R, Yang Z, Liu N, et al. 2023. Chitosan-enhanced heat tolerance associated with alterations in antioxidant defense system and gene expression in creeping bentgrass. Grass Research 3:7

doi: 10.48130/gr-2023-0007
[36]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[37]

Xu Y, Huang B. 2018. Comparative transcriptomic analysis reveals common molecular factors responsive to heat and drought stress in Agrostis stolonifera. Scientific Reports 8:15181

doi: 10.1038/s41598-018-33597-3
[38]

Goraya GK, Kaur B, Asthir B, Bala S, Kaur G, et al. 2017. Rapid injuries of high temperature in plants. Journal of Plant Biology 60:298−305

doi: 10.1007/s12374-016-0365-0
[39]

Medina E, Kim SH, Yun M, Choi WG. 2021. Recapitulation of the function and role of ROS generated in response to heat stress in plants. Plants 10:371

doi: 10.3390/plants10020371
[40]

Scandalios JG. 1993. Oxygen stress and superoxide dismutases. Plant Physiology 101:7−12

doi: 10.1104/pp.101.1.7
[41]

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30

doi: 10.1016/j.plaphy.2010.08.016
[42]

Mostofa MG, Abdelrahman M, Rahman MM, Tran CD, Nguyen KH, et al. 2022. Karrikin receptor KAI2 coordinates salt tolerance mechanisms in Arabidopsis thaliana. Plant and Cell Physiology 63:1927−42

doi: 10.1093/pcp/pcac121
[43]

Tian H, Watanabe Y, Nguyen KH, Tran CD, Abdelrahman M, et al. 2022. KARRIKIN UPREGULATED F-BOX 1 negatively regulates drought tolerance in Arabidopsis. Plant Physiology 190:2671−87

doi: 10.1093/plphys/kiac336
[44]

Wang L, Xu Q, Yu H, Ma H, Li X, et al. 2020. Strigolactone and karrikin signaling pathways elicit ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in Arabidopsis. The Plant Cell 32:2251−70

doi: 10.1105/tpc.20.00140
[45]

Sepulveda C, Guzmán MA, Li Q, Villaécija-Aguilar JA, Martinez SE, et al. 2022. KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 119:e2112820119

doi: 10.1073/pnas.2112820119
[46]

Li N, Euring D, Cha JY, Lin Z, Lu M, et al. 2021. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science 11:627969

doi: 10.3389/fpls.2020.627969
[47]

He Y, Liu Y, Cao W, Huai M, Xu B, et al. 2005. Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Science 45:988−95

doi: 10.2135/cropsci2003.0678
[48]

Kumazaki A, Suzuki N. 2019. Enhanced tolerance to a combination of heat stress and drought in Arabidopsis plants deficient in ICS1 is associated with modulation of photosynthetic reaction center proteins. Physiologia Plantarum 165:232−46

doi: 10.1111/ppl.12809
[49]

Ng DWK, Abeysinghe JK, Kamali M. 2018. Regulating the regulators: the control of transcription factors in plant defense signaling. International Journal of Molecular Sciences 19:3737

doi: 10.3390/ijms19123737
[50]

Nuruzzaman M, Sharoni AM, Kikuchi S. 2013. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in Microbiology 4:248

doi: 10.3389/fmicb.2013.00248
[51]

Xi Y, Ling Q, Zhou Y, Liu X, Qian Y. 2022. ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis. Frontiers in Plant Science 13:986628

doi: 10.3389/fpls.2022.986628
[52]

Ma Z, Hu L. 2024. WRKY transcription factor responses and tolerance to abiotic stresses in plants. International Journal of Molecular Sciences 25:6845

doi: 10.3390/ijms25136845
[53]

Wang H, Cheng X, Yin D, Chen D, Luo C, et al. 2023. Advances in the research on plant WRKY transcription factors responsive to external stresses. Current Issues in Molecular Biology 45:2861−80

doi: 10.3390/cimb45040187
[54]

Xu H, Li X, Zhang H, Wang L, Zhu Z, et al. 2020. High temperature inhibits the accumulation of storage materials by inducing alternative splicing of OsbZIP58 during filling stage in rice. Plant, Cell & Environment 43:1879−96

doi: 10.1111/pce.13779
[55]

Geng X, Zang X, Li H, Liu Z, Zhao A, et al. 2018. Unconventional splicing of wheat TabZIP60 confers heat tolerance in transgenic Arabidopsis. Plant Science 274:252−60

doi: 10.1016/j.plantsci.2018.05.029
[56]

Jacob P, Hirt H, Bendahmane A. 2017. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal 15:405−14

doi: 10.1111/pbi.12659
[57]

Chen S, Qiu G. 2022. Overexpression of Zostera japonica heat shock protein gene ZjHsp70 enhances the thermotolerance of transgenic Arabidopsis. Molecular Biology Reports 49:6189−97

doi: 10.1007/s11033-022-07411-3
[58]

Qian Y, Cao L, Zhang Q, Amee M, Chen K, et al. 2020. SMRT and Illumina RNA sequencing reveal novel insights into the heat stress response and crosstalk with leaf senescence in tall fescue. BMC Plant Biology 20:366

doi: 10.1186/s12870-020-02572-4
[59]

Zhu W, Xue C, Chen M, Yang Q. 2023. StHsfB5 promotes heat resistance by directly regulating the expression of Hsp genes in potato. International Journal of Molecular Sciences 24:16528

doi: 10.3390/ijms242216528
[60]

Huang YC, Niu CY, Yang CR, Jinn TL. 2016. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiology 172:1182−99

doi: 10.1104/pp.16.00860