| [1] |
Qu Y, Ou Z, Yong QQ, Yao X, Luo J. 2024. Coloration differences in three Camellia reticulata Lindl. cultivars: 'Tongzimian', 'Shizitou'and 'Damanao'. BMC Plant Biology 24(1):18 doi: 10.1186/s12870-023-04655-4 |
| [2] |
Geng F, Nie R, Yang N, Cai L, Hu Y, et al. 2022. Integrated transcriptome and metabolome profiling of Camellia reticulata reveal mechanisms of flower color differentiation. Frontiers in Genetics 13:1059717 doi: 10.3389/fgene.2022.1059717 |
| [3] |
Xiao H, Min J, Wu X, Huang D, Chen S, et al. 2024. Diversity analysis of flowers phenotypic traits of Camellia reticulata cultivars. Journal of Central South University of Forestry & Technology 44(10):181−95 doi: 10.14067/j.cnki.1673-923x.2024.10.018 |
| [4] |
Yu TT. 1984. A historical review and future development of Camellia reticulata in Yunnan. International Camellia Journal 16:21−24 |
| [5] |
Xin T, de Riek J, Guo H, Jarvis D, Ma L, et al. 2015. Impact of traditional culture on Camellia reticulata in Yunnan, China. Journal of Ethnobiology and Ethnomedicine 11:74 doi: 10.1186/1746-4269-11-1 |
| [6] |
Wu X, Gong Q, Ni X, Zhou Y, Gao Z. 2017. UFGT: the key enzyme associated with the petals variegation in Japanese apricot. Frontiers in Plant Science 8:108 doi: 10.3389/fpls.2017.00108 |
| [7] |
Hao Q, Li T, Lu G, Wang S, Li Z, et al. 2024. Chlorophyllase (PsCLH1) and light-harvesting chlorophyll a/b binding protein 1 (PsLhcb1) and PsLhcb5 maintain petal greenness in Paeonia suffruticosa 'Lv Mu Yin Yu'. Journal of Advanced Research In Press doi: 10.1016/j.jare.2024.09.003 |
| [8] |
Sun Y, Fan Z, Li X, Liu Z, Li J, et al. 2014. Distinct double flower varieties in Camellia japonica exhibit both expansion and contraction of C-class gene expression. BMC Plant Biology 14:288 doi: 10.1186/s12870-014-0288-1 |
| [9] |
Zhou XW, Fan ZQ, Chen Y, Zhu YL, Li JY, et al. 2013. Functional analyses of a flavonol synthase–like gene from Camellia nitidissima reveal its roles in flavonoid metabolism during floral pigmentation. Journal of Biosciences 38:593−604 doi: 10.1007/s12038-013-9339-2 |
| [10] |
De Vlaming P, Van Eekeres JEM, Wiering H. 1982. A gene for flower colour fading in Petunia hybrida. Theoretical and Applied Genetics 61:41−6 doi: 10.1007/BF00261508 |
| [11] |
Tanaka Y, Tsuda S, Kusumi T. 1998. Metabolic engineering to modify flower color. Plant and Cell Physiology 39(11):1119−26 doi: 10.1093/oxfordjournals.pcp.a029312 |
| [12] |
Yoshida K, Miki N, Momonoi K, Kawachi M, Katou K, et al. 2009. Synchrony between flower opening and petal-color change from red to blue in morning glory, Ipomoea tricolor cv. Heavenly Blue. Proceedings of the Japan Academy, Series B 85(6):187−97 doi: 10.2183/pjab.85.187 |
| [13] |
Liang M, Chen W, LaFountain AM, Liu Y, Peng F, et al. 2023. Taxon-specific, phased siRNAs underlie a speciation locus in monkeyflowers. Science 379(6632):576−82 doi: 10.1126/science.adf1323 |
| [14] |
Mekapogu M, Vasamsetti BMK, Kwon OK, Ahn MS, Lim SH, et al. 2020. Anthocyanins in floral colors: biosynthesis and regulation in Chrysanthemum flowers. International Journal of Molecular Sciences 21(18):6537 doi: 10.3390/ijms21186537 |
| [15] |
Zhou L, Liu S, Wang Y, Wang Y, Song A, et al. 2024. CmMYB3-like negatively regulates anthocyanin biosynthesis and flower color formation during the post-flowering stage in Chrysanthemum morifolium. Horticultural Plant Journal 10(1):194−204 doi: 10.1016/j.hpj.2023.02.011 |
| [16] |
Liu Z, Tao J, Ma C, Wen M, Xi R, et al. 2024. Dynamic changes in endogenous substances in flowering organs of Camellia drupifera during the flowering stage. Forests 15(8):1391 doi: 10.3390/f15081391 |
| [17] |
Yi C. 2014. Rosa hybrida pigment composition and Rose in bloomprocess Physiological characteristies of the study. Thesis. Sichuan Agricultural University, China. pp. 38−44 |
| [18] |
Khunmuang S, Kanlayanarat S, Wongs-Aree C, Meir S, Philosoph-Hadas S, et al. 2019. Ethylene induces a rapid degradation of petal anthocyanins in cut Vanda 'Sansai blue'orchid flowers. Frontiers in Plant Science 10:1004 doi: 10.3389/fpls.2019.01004 |
| [19] |
Guo L, Teixeira da Silva JA, Pan Q, Liao T, Yu X. 2022. Transcriptome analysis reveals candidate genes involved in anthocyanin biosynthesis in flowers of the pagoda tree (Sophora japonica L.). Journal of Plant Growth Regulation 41:1−14 doi: 10.1007/s00344-020-10222-0 |
| [20] |
Çakmakçı R, Mosber G, Milton AH, Alatürk F, Ali B. 2020. The effect of auxin and auxin-producing bacteria on the growth, essential oil yield, and composition in medicinal and aromatic plants. Current Microbiology 77:564−77 doi: 10.1007/s00284-020-01917-4 |
| [21] |
Danova K, Todorova M, Trendafilova A, Evstatieva L. 2012. Cytokinin and auxin effect on the terpenoid profile of the essential oil and morphological characteristics of shoot cultures of Artemisia alba. Natural Product Communications 7(8):1075−76 |
| [22] |
Yu S, Liu W, Ni S, Li J. 2023. Transcriptome analysis reveals the molecular mechanisms associated with flower color formation in Camellia japonica 'Joy Kendrick'. Forests 14(1):69 doi: 10.3390/f14010069 |
| [23] |
Xia Y, Chen W, Xiang W, Wang D, Xue B, et al. 2021. Integrated metabolic profiling and transcriptome analysis of pigment accumulation in Lonicera japonica flower petals during colour-transition. BMC Plant Biology 21:98 doi: 10.1186/s12870-021-02877-y |
| [24] |
Fox AR, Soto GC, Jones AM, Casal JJ, Muschietti JP, et al. 2012. cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis. Plant Molecular Biology 80:315−24 doi: 10.1007/s11103-012-9950-x |
| [25] |
Yoshida K, Kitahara S, Ito D, Kondo T. 2006. Ferric ions involved in the flower color development of the Himalayan blue poppy, Meconopsis grandis. Phytochemistry 67(10):992−98 doi: 10.1016/j.phytochem.2006.03.013 |
| [26] |
Jariani P, Shahnejat-Bushehri AA, Naderi R, Zargar M, Naghavi MR. 2024. Characterization of key genes in anthocyanin and flavonoid biosynthesis during floral development in Rosa canina L. International Journal of Biological Macromolecules 276:133937 doi: 10.1016/j.ijbiomac.2024.133937 |
| [27] |
Han M, Lu R, Han M, Yang X, Du F, et al. 2024. Anthocyanin accumulation and chlorophyll degradation lead to the formation of colourful leaves of Syringa oblata in autumn. Acta Botanica Brasilica 38:e20230226 doi: 10.1590/1677-941x-abb-2023-0226 |
| [28] |
He G, Zhang R, Jiang S, Wang H, Ming F. 2023. The MYB transcription factor RcMYB1 plays a central role in rose anthocyanin biosynthesis. Horticulture Research 10(6):uhad080 doi: 10.1093/hr/uhad080 |
| [29] |
Wang C, Jing S, Yu J, Hou D, Yang Y, et al. 2024. X-ray irradiation maintains soluble sugar content and regulates expression of genes related to sugar metabolism of figs (Ficus carica L. 'Siluhongyu'). Postharvest Biology and Technology 216:113071 doi: 10.1016/j.postharvbio.2024.113071 |
| [30] |
Feng Y, Zhi L, Pan H, Chen Y, Xu J. 2023. Shade improves seedling quality of ornamental Cyclocarya species under plastic greenhouse cultivation. Ornamental Plant Research 3:13 doi: 10.48130/opr-2023-0013 |
| [31] |
Bartoli CG, Simontacchi M, Montaldi ER, Puntarulo S. 1997. Oxidants and antioxidants during aging of chrysanthemum petals. Plant Science 129(2):157−65 doi: 10.1016/S0168-9452(97)00197-0 |
| [32] |
Wang X, Wei X, Zhao W, Li X, Dong S. 2024. Elucidating hormone transduction and the protein response of soybean roots to drought stress based on ultra performance liquid chromatography–tandem mass spectrometry and four-dimensional data-independent acquisition. Environmental and Experimental Botany 224:105820 doi: 10.1016/j.envexpbot.2024.105820 |
| [33] |
Moyroud E, Wenzel T, Middleton R, Rudall PJ, Banks H, et al. 2017. Disorder in convergent floral nanostructures enhances signalling to bees. Nature 550(7677):469−74 doi: 10.1038/nature24285 |
| [34] |
Bian W, Barsan C, Egea I, Purgatto E, Chervin C, et al. 2011. Metabolic and molecular events occurring during chromoplast biogenesis. Journal of Botany 2011(1):289859 doi: 10.1155/2011/289859 |
| [35] |
Hu W, Chen Y, Xu Z, Liu L, Yan D, et al. 2024. Natural variations in the cis-elements of GhRPRS1 contributing to petal colour diversity in cotton. Plant Biotechnology Journal 22(12):3473−88 doi: 10.1111/pbi.14468 |
| [36] |
Haratym W, Weryszko-Chmielewska E, Konarska A. 2020. Microstructural and histochemical analysis of aboveground organs of Centaurea cyanus used in herbal medicine. Protoplasma 257:285−98 doi: 10.1007/s00709-019-01437-4 |
| [37] |
Horner HT, Healy RA, Ren G, Fritz D, Klyne A, et al. 2007. Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. American Journal of Botany 94(1):12−24 doi: 10.3732/ajb.94.1.12 |
| [38] |
Wang Y, Wang Y, Zhou LJ, Peng J, Chen C, et al. 2023. CmNAC25 targets CmMYB6 to positively regulate anthocyanin biosynthesis during the post-flowering stage in Chrysanthemum. BMC Biology 21(1):211 doi: 10.1186/s12915-023-01719-7 |
| [39] |
Guo L, Wang Y, eixeira da Silva JA, Fan Y, Yu X. 2019. Transcriptome and chemical analysis reveal putative genes involved in flower color change in Paeonia 'Coral Sunset'. Plant Physiology and Biochemistry 138:130−39 doi: 10.1016/j.plaphy.2019.02.025 |
| [40] |
Han M, Yang C, Zhou J, Zhu J, Meng J, et al. 2020. Analysis of flavonoids and anthocyanin biosynthesis-related genes expression reveals the mechanism of petal color fading of Malus hupehensis (Rosaceae). Brazilian Journal of Botany 43:81−89 doi: 10.1007/s40415-020-00590-y |
| [41] |
Zhang L, Wang L, Fang Y, Gao Y, Yang S, et al. 2024. Phosphorylated transcription factor PuHB40 mediates ROS-dependent anthocyanin biosynthesis in pear exposed to high light. The Plant Cell 36(9):3562−83 doi: 10.1093/plcell/koae167 |
| [42] |
Mittler R. 2017. ROS are good. Trends in Plant Science 22(1):11−19 doi: 10.1016/j.tplants.2016.08.002 |
| [43] |
Yu P, Piao M, Kong X, Liu Y, Gao L, et al. 2024. The coordinated interaction or regulation between anthocyanin and carotenoid pathways in OT hybrid lilies based on metabolome and time-course transcriptomics analysis. Industrial Crops and Products 222:119795 doi: 10.1016/j.indcrop.2024.119795 |
| [44] |
Li Y, Bao T, Zhang J, Li H, Shan X, et al. 2025. The coordinated interaction or regulation between floral pigments and volatile organic compounds. Horticultural Plant Journal 11:463−85 doi: 10.1016/j.hpj.2024.01.002 |
| [45] |
Bao M, Liu M, Zhang Q, Wang T, Sun X, et al. 2020. Factors affecting the color of herbaceous peony. Journal of the American Society for Horticultural Science 145(4):257−66 doi: 10.21273/JASHS04892-20 |