[1]

Wu Z, Luo L, Wan Y, Liu F. 2023. Genome-wide characterization of the PP2C gene family in peanut (Arachis hypogaea L.) and the identification of candidate genes involved in salinity-stress response. Frontiers in Plant Science 14:1093913

doi: 10.3389/fpls.2023.1093913
[2]

Zhang G, Zhang Z, Luo S, Li X, Lyu J, et al. 2022. Genome-wide identifcation and expression analysis of the cucumber PP2C gene family. BMC Genomics 23:563

doi: 10.1186/s12864-022-08734-y
[3]

Farkas I, Dombrádi V, Miskei M, Szabados L, Koncz C. 2007. Arabidopsis PPP family of serine/threonine phosphatases. Trends in Plant Science 12(4):169−76

doi: 10.1016/j.tplants.2007.03.003
[4]

Wang Y, Xu C, Li G, Ding Z, Zheng S. 2023. Research progress of protein phosphatases type 2C family in response to various stresses in plants. Plant Physiology Journal 59(8):1463−73

doi: 10.13592/j.cnki.ppj.300173
[5]

Fuchs S, Grill E, Meskiene I, Schweighofer A. 2013. Type 2C protein phosphatases in plants. The FEBS Journal 280:681−93

doi: 10.1111/j.1742-4658.2012.08670.x
[6]

Xue T, Wang D, Zhang S, Ehlting J, Ni F, et al. 2008. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics 9:550

doi: 10.1186/1471-2164-9-550
[7]

Yu X, Han J, Wang E, Xiao J, Hu R, et al. 2019. Genome-wide identification and homoeologous expression analysis of PP2C genes in wheat (Triticum aestivum L.). Frontiers in Genetics 10:561

doi: 10.3389/fgene.2019.00561
[8]

Qiu J, Ni L, Xia X, Chen S, Zhang Y, et al. 2022. Genome-wide analysis of the protein phosphatase 2C genes in tomato. Genes 13(4):604

doi: 10.3390/genes13040604
[9]

Pang Y, Cao L, Ye F, Ma C, Liang X, et al. 2024. Identification of the maize PP2C gene family and functional studies on the role of ZmPP2C15 in drought tolerance. Plants 13:340

doi: 10.3390/plants13030340
[10]

Shazadee H, Khan N, Wang J, Wang C, Zeng J, et al. 2019. Identification and expression profiling of protein phosphatases (PP2C) gene family in Gossypium hirsutum L. International Journal of Molecular Sciences 20:1395

doi: 10.3390/ijms20061395
[11]

Liu B, Zhang Q, Qi L, Wu Y, Wang Y. 2024. Genomic-wide identification and expression analysis of the PP2C gene family in sweet cherry. Acta Agriculturae Zhejiangensis 36(10):2204−18

doi: 10.3969/j.issn.1004-1524.20240162
[12]

Shen Y, Zou J, Luo P, Shang W, Li Y, et al. 2023. Genome-wide identification and abiotic stress response analysis of PP2C family genes in Rosa chinensis 'Old Blush'. Acta Horticulturae Sinica 50(10):2139−56

doi: 10.16420/j.issn.0513-353x.2022-0752
[13]

Yang X, Tang M, Zhang B. 2022. Identification of soybean PP2C family genes and transcriptome analysis in response to salt stress. Acta Agriculturae Zhejiangensis 34(2):207−20

doi: 10.3969/j.issn.1004-1524.2022.02.01
[14]

Yang D. 2024. Identification and functional analysis of PYL-PP2C-SnRK2s gene family in quinoa (Chenopodium quinoa Willd.). Thesis. Yantai University, China. pp. 43

[15]

Guo L, Lu S, Liu T, Nai G, Ren J, et al. 2023. Genome-wide identification and abiotic stress response analysis of PP2C gene family in woodland and pineapple strawberries. International Journal of Molecular Sciences 24(4):4049

doi: 10.3390/ijms24044049
[16]

Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324(5930):1068−71

doi: 10.1126/science.1173041
[17]

de Zelicourt A, Colcombet J, Hirt H. 2016. The role of MAPK modules and ABA during abiotic stress signaling. Trends in Plant Science 21(8):677−85

doi: 10.1016/j.tplants.2016.04.004
[18]

Jung C, Nguyen NH, Cheong JJ. 2020. Transcriptional regulation of protein phosphatase 2C genes to modulate abscisic acid signaling. International Journal of Molecular Sciences 21:9517

doi: 10.3390/ijms21249517
[19]

Yoshida T, Mergner J, Yang Z, Liu J, Kuster B, et al. 2024. Integrating multi-omics data reveals energy and stress signaling activated by abscisic acid in Arabidopsis. The Plant Journal 119:1112−33

doi: 10.1111/tpj.16765
[20]

Sun BR, Fu CY, Fan ZL, Chen Y, Chen WF, et al. 2019. Genomic and transcriptomic analysis reveal molecular basis of salinity tolerance in a novel strong salt-tolerant rice Landrace Changmaogu. Rice 12:99

doi: 10.1186/s12284-019-0360-4
[21]

Smékalová V, Doskočilová A, Komis G, Šamaj J. 2014. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnology Advances 32(1):2−11

doi: 10.1016/j.biotechadv.2013.07.009
[22]

Brock AK, Willmann R, Kolb D, Grefen L, Lajunen HM, et al. 2010. The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression. Plant Physiology 153(3):1098−111

doi: 10.1104/pp.110.156109
[23]

Zhang P, Yuan Z, Wei L, Qiu X, Wang G, et al. 2022. Overexpression of ZmPP2C55 positively enhances tolerance to drought stress in transgenic maize plants. Plant Science 314:111127

doi: 10.1016/j.plantsci.2021.111127
[24]

Chu M, Chen P, Meng S, Xu P, Lan W. 2021. The Arabidopsis phosphatase PP2C49 negatively regulates salt tolerance through inhibition of AtHKT1;1. Journal of Integrative Plant Biology 63(3):528−42

doi: 10.1111/jipb.13008
[25]

Fu H, Yu X, Jiang Y, Wang Y, Yang Y, et al. 2023. SALT OVERLY SENSITIVE 1 is inhibited by clade D Protein phosphatase 2C D6 and D7 in Arabidopsis thaliana. The Plant Cell 35:279−97

doi: 10.1093/plcell/koac283
[26]

Liu YY, Shi WS, Liu Y, Gao XM, Hu B, et al. 2022. MdPP2C24/37, protein phosphatase type 2Cs from apple, interact with MdPYL2/12 to negatively regulate ABA signaling in transgenic Arabidopsis. International Journal of Molecular Sciences 23:14375

doi: 10.3390/ijms232214375
[27]

Hu X, Liu L, Xiao B, Li D, Xing X, et al. 2010. Enhanced tolerance to low temperature in tobacco by over-expression of a new maize protein phosphatase 2C, ZmPP2C2. Journal of Plant Physiology 167(15):1307−15

doi: 10.1016/j.jplph.2010.04.014
[28]

Urrea Castellanos R, Friedrich T, Petrovic N, Altmann S, Brzezinka K, et al. 2020. FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis. The Plant Journal 104:7−17

doi: 10.1111/tpj.14927
[29]

Tsukagoshi H, Suzuki T, Nishikawa K, Agarie S, Ishiguro S, et al. 2015. RNA-seq analysis of the response of the halophyte, Mesembryanthemum crystallinum (ice plant) to high salinity. PLoS One 10(2):e0118339

doi: 10.1371/journal.pone.0118339
[30]

Kong W, Yoo MJ, Zhu D, Noble JD, Kelley TM, et al. 2020. Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C3 to CAM transition. Plant Molecular Biology 103(6):653−67

doi: 10.1007/s11103-020-01016-9
[31]

Shen S, Li N, Wang Y, Zhou R, Sun P, et al. 2022. High-quality ice plant reference genome analysis provides insights into genome evolution and allows exploration of genes involved in the transition from C3 to CAM pathways. Plant Biotechnology Journal 20(11):2107−22

doi: 10.1111/pbi.13892
[32]

Cushman JC, Tillett RL, Wood JA, Branco JM, Schlauch KA. 2008. Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM). Journal of Experimental Botany 59(7):1875−94

doi: 10.1093/jxb/ern008
[33]

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, et al. 2018. HMMER web server: 2018 update. Nucleic Acids Research 46(W1):W200−W204

doi: 10.1093/nar/gky448
[34]

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421

doi: 10.1186/1471-2105-10-421
[35]

Jones P, Binns D, Chang HY, Fraser M, Li W, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236−40

doi: 10.1093/bioinformatics/btu031
[36]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16(11):1733−42

doi: 10.1016/j.molp.2023.09.010
[37]

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020. Corrigendum to: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37(8):2461

doi: 10.1093/molbev/msaa131
[38]

Sun P, Jiao B, Yang Y, Shan L, Li T, et al. 2022. WGDI: a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Molecular Plant 15(12):1841−51

doi: 10.1016/j.molp.2022.10.018
[39]

Wang T, Hu J, Ma X, Li C, Yang Q, et al. 2020. Identification, evolution and expression analyses of whole genome-wide TLP gene family in Brassica napus. BMC Genomics 21(1):264

doi: 10.1186/s12864-020-6678-x
[40]

Wang Y, Tang H, Wang X, Sun Y, Joseph PV, et al. 2024. Detection of colinear blocks and synteny and evolutionary analyses based on utilization of MCScanX. Nature Protocols 19(7):2206−29

doi: 10.1038/s41596-024-00968-2
[41]

Song X, Sun P, Yuan J, Gong K, Li N, et al. 2021. The celery genome sequence reveals sequential paleo-polyploidizations, karyotype evolution and resistance gene reduction in Apiales. Plant Biotechnology Journal 19(4):731−44

doi: 10.1111/pbi.13499
[42]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30(1):325−27

doi: 10.1093/nar/30.1.325
[43]

Freeling M, Woodhouse MR, Subramaniam S, Turco G, Lisch D, et al. 2012. Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Current Opinion in Plant Biology 15(2):131−39

doi: 10.1016/j.pbi.2012.01.015
[44]

Song XM, Wang JP, Sun PC, Ma X, Yang QH, et al. 2020. Preferential gene retention increases the robustness of cold regulation in Brassicaceae and other plants after polyploidization. Horticulture Research 7:20

doi: 10.1038/s41438-020-0253-0
[45]

Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, et al. 2007. The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. The Plant Cell 19:2213−24

doi: 10.1105/tpc.106.049585