| [1] |
Paton A. 1992. A synopsis of Ocimum L. (Labiatae) in Africa. Kew Bulletin 47:403−35 doi: 10.2307/4110571 |
| [2] |
Singh S, Lal RK, Maurya R, Chanotiya CS. 2018. Genetic diversity and chemotype selection in genus Ocimum. Journal of Applied Research on Medicinal and Aromatic Plants 9:19−25 doi: 10.1016/j.jarmap.2017.11.004 |
| [3] |
Shahrajabian MH, Sun W, Cheng Q. 2020. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): a review. International Journal of Food Properties 23:1961−70 doi: 10.1080/10942912.2020.1828456 |
| [4] |
Spence C. 2024. Sweet basil: an increasingly popular culinary herb. International Journal of Gastronomy and Food Science 36:100927 doi: 10.1016/j.ijgfs.2024.100927 |
| [5] |
Calderón Bravo H, Vera Céspedes N, Zura-Bravo L, Muñoz LA. 2021. Basil seeds as a novel food, source of nutrients and functional ingredients with beneficial properties: a review. Foods 10:1467 doi: 10.3390/foods10071467 |
| [6] |
Eriotou E, Anastasiadou K, Nikolopoulos D, Koulougliotis D. 2015. Antimicrobial and free radical scavenging activities of basil (Ocimum basilicum) essential oil isolated from five plant varieties growing in Greece. Journal of Nutrition & Food Sciences 5:3 doi: 10.4172/2155-9600.1000367 |
| [7] |
Dhama K, Sharun K, Gugjoo MB, Tiwari R, Alagawany M, et al. 2023. A comprehensive review on chemical profile and pharmacological activities of Ocimum basilicum. Food Reviews International 39:119−47 doi: 10.1080/87559129.2021.1900230 |
| [8] |
Qin L, Li C, Li D, Wang J, Yang L, et al. 2022. Physiological, metabolic and transcriptional responses of Basil (Ocimum basilicum Linn. var. pilosum (Willd.) Benth.) to heat stress. Agronomy 12:1434 doi: 10.3390/agronomy12061434 |
| [9] |
Zhang JW, Li SK, Wu WJ. 2009. The main chemical composition and in vitro antifungal activity of the essential oils of Ocimum basilicum Linn. var. pilosum (Willd.) Benth. Molecules 14:273−78 doi: 10.3390/molecules14010273 |
| [10] |
Gaddaguti V, Ch SR, Bhogireddy NR, Rao BV, Talluri VR, et al. 2015. Pharmacognostic and preliminary phytochemical evaluation of Ocimum basilicum L. var. pilosum (Willd.) Benth. and O. tenuiflorum var. CIM-AYU. International Journal of Pharmacognosy and Phytochemical Research 9:519−26 |
| [11] |
Rawat R, Negi K, Mehta P, Tiwari V, Verma S, et al. 2016. Study of six varieties of sweet basil (Ocimum basilicum L.) and their morphological variations. Journal of Non-Timber Forest Products 23:17−22 doi: 10.54207/bsmps2000-2016-7T1Z9Z |
| [12] |
Liu Y, Zhang H, Umashankar S, Liang X, Lee HW, et al. 2018. Characterization of plant volatiles reveals distinct metabolic profiles and pathways among 12 Brassicaceae vegetables. Metabolites 8:94 doi: 10.3390/metabo8040094 |
| [13] |
Zheljazkov VD, Callahan A, Cantrell CL. 2008. Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi. Journal of Agricultural and Food Chemistry 56:241−45 doi: 10.1021/jf072447y |
| [14] |
Ahmed AF, Attia FAK, Liu Z, Li C, Wei J, et al. 2019. Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness 8:299−305 doi: 10.1016/j.fshw.2019.07.004 |
| [15] |
Jelačić SĆ, Beatović DV, Prodanović SA, Tasić SR, Moravčević ĐŽ, et al. 2011. Chemical composition of the essential oil of basil (Ocimum basilicum L. Lamiaceae). Hemijska Industrija 65:465−71 doi: 10.2298/HEMIND110227020J |
| [16] |
da Silva WMF, Kringel DH, de Souza EJD, da Rosa Zavareze E, Dias ARG. 2022. Basil essential oil: methods of extraction, chemical composition, biological activities, and food applications. Food and Bioprocess Technology 15:1−27 doi: 10.1007/s11947-021-02690-3 |
| [17] |
Rastogi S, Meena S, Bhattacharya A, Ghosh S, Shukla RK, et al. 2014. De novo sequencing and comparative analysis of holy and sweet basil transcriptomes. BMC Genomics 15:588 doi: 10.1186/1471-2164-15-588 |
| [18] |
Kumar Y, Khan F, Rastogi S, Shasany AK. 2018. Genome-wide detection of terpene synthase genes in holy basil (Ocimum sanctum L.). PLoS One 13:e0207097 doi: 10.1371/journal.pone.0207097 |
| [19] |
Torre S, Tattini M, Brunetti C, Guidi L, Gori A, et al. 2016. De novo assembly and comparative transcriptome analyses of red and green morphs of sweet basil grown in full sunlight. PLoS One 11:e0160370 doi: 10.1371/journal.pone.0160370 |
| [20] |
Renu IK, Haque I, Kumar M, Poddar R, Bandopadhyay R, et al. 2014. Characterization and functional analysis of eugenol O-methyltransferase gene reveal metabolite shifts, chemotype specific differential expression and developmental regulation in Ocimum tenuiflorum L. Molecular Biology Reports 41:1857−70 doi: 10.1007/s11033-014-3035-7 |
| [21] |
Khakdan F, Alizadeh H, Ranjbar M. 2018. Molecular cloning, functional characterization and expression of a drought inducible phenylalanine ammonia-lyase gene (ObPAL) from Ocimum basilicum L. Plant Physiology and Biochemistry 130:464−72 doi: 10.1016/j.plaphy.2018.07.026 |
| [22] |
Gonda I, Faigenboim A, Adler C, Milavski R, Karp MJ, et al. 2020. The genome sequence of tetraploid sweet basil, Ocimum basilicum L., provides tools for advanced genome editing and molecular breeding. DNA Research 27:dsaa027 doi: 10.1093/dnares/dsaa027 |
| [23] |
Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, et al. 2011. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols 6:1060−83 doi: 10.1038/nprot.2011.335 |
| [24] |
Fu Y, Huo K, Pei X, Liang C, Meng X, et al. 2022. Full-length transcriptome revealed the accumulation of polyunsaturated fatty acids in developing seeds of Plukenetia volubilis. PeerJ 10:e13998 doi: 10.7717/peerj.13998 |
| [25] |
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210−12 doi: 10.1093/bioinformatics/btv351 |
| [26] |
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−15 doi: 10.1038/s41587-019-0201-4 |
| [27] |
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33:290−95 doi: 10.1038/nbt.3122 |
| [28] |
Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12:59−60 doi: 10.1038/nmeth.3176 |
| [29] |
Jones P, Binns D, Chang HY, Fraser M, Li W, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236−40 doi: 10.1093/bioinformatics/btu031 |
| [30] |
Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, et al. 2016. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Molecular Plant 9:1667−70 doi: 10.1016/j.molp.2016.09.014 |
| [31] |
Li N, Liu T, Guo F, Yang J, Shi Y, et al. 2022. Identification of long non-coding RNA-microRNA-mRNA regulatory modules and their potential roles in drought stress response in wheat (Triticum aestivum L.). Frontiers in Plant Science 13:1011064 doi: 10.3389/fpls.2022.1011064 |
| [32] |
Foissac S, Sammeth M. 2007. ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Research 35:W297−W299 doi: 10.1093/nar/gkm311 |
| [33] |
Corrado G, Lucini L, Miras-Moreno B, Chiaiese P, Colla G, et al. 2020. Metabolic insights into the anion-anion antagonism in sweet basil: effects of different nitrate/chloride ratios in the nutrient solution. International Journal of Molecular Sciences 21:2482 doi: 10.3390/ijms21072482 |
| [34] |
Oliveira JS, Porto LA, Estevam CS, Siqueira RS, Alves PB, et al. 2009. Phytochemical screening and anticonvulsant property of Ocimum basilicum leaf essential oil. Latin American and Caribbean Bulletin of Medicinal and Aromatic Plants 8(3):195−202 |
| [35] |
Joshi RK. 2014. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Ancient Science of Life 33:151−56 doi: 10.4103/0257-7941.144618 |
| [36] |
Al Abbasy DW, Pathare N, Al-Sabahi JN, Khan SA. 2015. Chemical composition and antibacterial activity of essential oil isolated from Omani basil (Ocimum basilicum Linn.). Asian Pacific Journal of Tropical Disease 5:645−49 doi: 10.1016/S2222-1808(15)60905-7 |
| [37] |
Sharafati Chaleshtori R, Rokni N, Rafieian-Kopaei M, Drees F, Salehi E. 2015. Antioxidant and antibacterial activity of basil (Ocimum basilicum L.) essential oil in beef burger. Journal of Agricultural Science and Technology 17:817−26 |
| [38] |
Zhan X, Yang L, Wang D, Zhu JK, Lang Z. 2016. De novo assembly and analysis of the transcriptome of Ocimum americanum var. pilosum under cold stress. BMC Genomics 17:209 doi: 10.1186/s12864-016-2507-7 |
| [39] |
Liu Y, Liao X, Han T, Su A, Guo Z, et al. 2021. Full-length transcriptome sequencing of the scleractinian coral Montipora foliosa reveals the gene expression profile of coral–zooxanthellae holobiont. Biology 10:1274 doi: 10.3390/biology10121274 |
| [40] |
Rhoads A, Au KF. 2015. PacBio sequencing and its applications. Genomics, Proteomics & Bioinformatics 13:278−89 doi: 10.1016/j.gpb.2015.08.002 |
| [41] |
Tabrez SS, Sharma RD, Jain V, Siddiqui AA, Mukhopadhyay A. 2017. Differential alternative splicing coupled to nonsense-mediated decay of mRNA ensures dietary restriction-induced longevity. Nature Communications 8:306 doi: 10.1038/s41467-017-00370-5 |
| [42] |
Wang Z, Yang J, Gao Q, He S, Xu Y, et al. 2023. The transcription factor NtERF13a enhances abiotic stress tolerance and phenylpropanoid compounds biosynthesis in tobacco. Plant Science 334:111772 doi: 10.1016/j.plantsci.2023.111772 |
| [43] |
Liu J, Osbourn A, Ma P. 2015. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular Plant 8:689−708 doi: 10.1016/j.molp.2015.03.012 |
| [44] |
Yang J, Chen Y, Gao M, Wu L, Xiong S, et al. 2022. Comprehensive identification of bHLH transcription factors in Litsea cubeba reveals candidate gene involved in the monoterpene biosynthesis pathway. Frontiers in Plant Science 13:1081335 doi: 10.3389/fpls.2022.1081335 |
| [45] |
Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science 20:176−85 doi: 10.1016/j.tplants.2014.12.001 |
| [46] |
Memelink J, Menke FLH, Van der Fits L, Kijne JW. 2000. Transcriptional regulators to modify secondary metabolism. In Metabolic Engineering of Plant Secondary Metabolism, eds Verpoorte R, Alfermann AW. Dordrecht: Springer. pp. 111–25. doi: 10.1007/978-94-015-9423-3_6 |
| [47] |
Zhang K, Logacheva MD, Meng Y, Hu J, Wan D, et al. 2018. Jasmonate-responsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricum. Journal of Experimental Botany 69:1955−66 doi: 10.1093/jxb/ery032 |
| [48] |
Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519−46 doi: 10.1146/annurev.arplant.54.031902.134938 |
| [49] |
Wang L, Yang Z, Zhang B, Yu D, Liu J, et al. 2018. Genome-wide characterization and phylogenetic analysis of GSK gene family in three species of cotton: evidence for a role of some GSKs in fiber development and responses to stress. BMC Plant Biology 18:330 doi: 10.1186/s12870-018-1526-8 |
| [50] |
Latza S, Ganßer D, Berger RG. 1996. Carbohydrate esters of cinnamic acid from fruits of Physalis peruviana, Psidium guajava and Vaccinium vitis-idaea. Phytochemistry 43:481−85 doi: 10.1016/0031-9422(96)00303-2 |
| [51] |
Dexter R, Qualley A, Kish CM, Ma CJ, Koeduka T, et al. 2007. Characterization of a Petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. The Plant Journal 49:265−75 doi: 10.1111/j.1365-313X.2006.02954.x |