[1]

Ülker B, Somssich IE. 2004. WRKY transcription factors: from dna binding towards biological function. Current Opinion in Plant Biology 7:491−98

doi: 10.1016/j.pbi.2004.07.012
[2]

Wang H, Chen W, Xu Z, Chen M, Yu D. 2023. Functions of WRKYs in plant growth and development. Trends in Plant Science 28:630−45

doi: 10.1016/j.tplants.2022.12.012
[3]

Huang K, Wu T, Ma Z, Li Z, Chen H, et al. 2021. Rice transcription factor OsWRKY55 is involved in the drought response and regulation of plant growth. International Journal of Molecular Sciences 22:4337

doi: 10.3390/ijms22094337
[4]

Okay S, Derelli E, Unver T. 2014. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress. Molecular Genetics and Genomics 289:765−81

doi: 10.1007/s00438-014-0849-x
[5]

Cheng Z, Luan Y, Meng J, Sun J, Tao J, et al. 2021. WRKY transcription factor response to high-temperature stress. Plants 10:2211

doi: 10.3390/plants10102211
[6]

Ding ZJ, Yan JY, Li GX, Wu ZC, Zhang SQ, et al. 2014. WRKY41 Controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. The Plant Journal 79:810−23

doi: 10.1111/tpj.12597
[7]

Chen M, Tan Q, Sun M, Li D, Fu X, et al. 2016. Genome-wide identification of WRKY family genes in peach and analysis of WRKY expression during bud dormancy. Molecular Genetics and Genomics 291:1319−32

doi: 10.1007/s00438-016-1171-6
[8]

Puccio G, Crucitti A, Tiberini A, Mauceri A, Taglienti A, et al. 2022. WRKY gene family drives dormancy release in onion bulbs. Cells 11:1100

doi: 10.3390/cells11071100
[9]

Schluttenhofer C, Yuan L. 2015. Regulation of specialized metabolism by WRKY transcription factors. Plant Physiology 167:295−306

doi: 10.1104/pp.114.251769
[10]

Rinerson CI, Scully ED, Palmer NA, Donze-Reiner T, Rabara RC, et al. 2015. The WRKY transcription factor family and senescence in switchgrass. BMC Genomics 16:912

doi: 10.1186/s12864-015-2057-4
[11]

Niu F, Cui X, Zhao P, Sun M, Yang B, et al. 2020. WRKY42 Transcription factor positively regulates leaf senescence through modulating SA and ROS synthesis in Arabidopsis thaliana. The Plant Journal 104:171−84

doi: 10.1111/tpj.14914
[12]

Gu L, Dou L, Guo Y, Wang H, Li L, et al. 2019. The WRKY transcription factor GhWRKY27 coordinates the senescence regulatory pathway in upland cotton (Gossypium hirsutum L.). BMC Plant Biology 19:116

doi: 10.1186/s12870-019-1688-z
[13]

Naoumkina MA, He X, Dixon RA. 2008. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biology 8:132

doi: 10.1186/1471-2229-8-132
[14]

Sun C, Zhang W, Qu H, Yan L, Li L, et al. 2022. Comparative physiological and transcriptomic analysis reveal MdWRKY75 associated with sucrose accumulation in postharvest 'Honeycrisp' apples with bitter pit. BMC Plant Biology 22:71

doi: 10.1186/s12870-022-03453-8
[15]

Ren L, Wan W, Yin D, Deng X, Ma Z, et al. 2023. Genome-wide analysis of WRKY transcription factor genes in Toona sinensis: an insight into evolutionary characteristics and terpene synthesis. Frontiers in Plant Science 13:1063850

doi: 10.3389/fpls.2022.1063850
[16]

Chen F, Hu Y, Vannozzi A, Wu K, Cai H, et al. 2017. The WRKY transcription factor family in model plants and crops. Critical Reviews in Plant Sciences 36:311−35

doi: 10.1080/07352689.2018.1441103
[17]

Zhang Y, Wang L. 2005. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology 5:1

doi: 10.1186/1471-2148-5-1
[18]

Chen X, Li C, Wang H, Guo Z. 2019. WRKY transcription factors: evolution, binding, and action. Phytopathology Research 1:13

doi: 10.1186/s42483-019-0022-x
[19]

Xu YP, Xu H, Wang B, Su XD. 2020. Crystal structures of N-terminal WRKY transcription factors and DNA complexes. Protein & Cell 11:208−13

doi: 10.1007/s13238-019-00670-0
[20]

Agarwal P, Reddy MP, Chikara J. 2011. WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Molecular Biology Reports 38:3883−96

doi: 10.1007/s11033-010-0504-5
[21]

Eulgem T, Somssich IE. 2007. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology 10:366−71

doi: 10.1016/j.pbi.2007.04.020
[22]

Saha B, Nayak J, Srivastava R, Samal S, Kumar D, et al. 2023. Unraveling the involvement of WRKY TFs in regulating plant disease defense signaling. Planta 259:7

doi: 10.1007/s00425-023-04269-y
[23]

Huang Y, Li MY, Wu P, Xu ZS, Que F, et al. 2016. Members of WRKY group III transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum). BMC Genomics 17:788

doi: 10.1186/s12864-016-3123-2
[24]

Han D, Zhou Z, Du M, Li T, Wu X, et al. 2020. Overexpression of a Malus Xiaojinensis WRKY transcription factor gene (MxWRKY55) increased iron and high salinity stress tolerance in Arabidopsis thaliana. In Vitro Cellular & Developmental Biology - Plant 56:600−09

doi: 10.1007/s11627-020-10129-1
[25]

Gao YF, Liu JK, Yang FM, Zhang GY, Wang D, et al. 2020. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiologia Plantarum 168:98−117

doi: 10.1111/ppl.12978
[26]

Li H, Gao Y, Xu H, Dai Y, Deng D, et al. 2013. ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regulation 70:207−16

doi: 10.1007/s10725-013-9792-9
[27]

Huang J, Liu F, Chao D, Xin B, Liu K, et al. 2022. The WRKY transcription factor OsWRKY54 is involved in salt tolerance in rice. International Journal of Molecular Sciences 23:11999

doi: 10.3390/ijms231911999
[28]

Liu J, Peng L, Cao C, Bai C, Wang Y, et al. 2024. Identification of WRKY family members and characterization of the low-temperature-stress-responsive WRKY genes in Luffa (Luffa cylindrica L.). Plants 13:676

doi: 10.3390/plants13050676
[29]

Zhang L, Zhao T, Sun X, Wang Y, Du C, et al. 2019. Overexpression of VaWRKY12, a transcription factor from Vitis amurensis with increased nuclear localization under low temperature, enhances cold tolerance of plants. Plant Molecular Biology 100:95−110

doi: 10.1007/s11103-019-00846-6
[30]

Zhao L, Yan J, Xiang Y, Sun Y, Zhang A. 2021. ZmWRKY104 transcription factor phosphorylated by ZmMPK6 functioning in ABA-induced antioxidant defense and enhance drought tolerance in maize. Biology 10:893

doi: 10.3390/biology10090893
[31]

Ma Q, Xia Z, Cai Z, Li L, Cheng Y, et al. 2019. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Frontiers in Plant Science 9:1979

doi: 10.3389/fpls.2018.01979
[32]

Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, et al. 2012. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant, Cell & Environment 35:1156−70

doi: 10.1111/j.1365-3040.2012.02480.x
[33]

Zhou J, Wang J, Zheng Z, Fan B, Yu JQ, et al. 2015. Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses. Journal of Experimental Botany 66:4567−83

doi: 10.1093/jxb/erv221
[34]

Jiang K, Yang Z, Sun J, Liu H, Chen S, et al. 2022. Evaluation of the tolerance and forage quality of different ecotypes of seashore paspalum. Frontiers in Plant Science 13:944894

doi: 10.3389/fpls.2022.944894
[35]

Sagers JK, Waldron BL, Creech JE, Mott IW, Bugbee B. 2017. Salinity tolerance of three competing rangeland plant species: studies in hydroponic culture. Ecology and Evolution 7:10916−29

doi: 10.1002/ece3.3607
[36]

Otitoloju K. 2014. Influence of sea sprays on growth and visual quality of seashore Paspalum (Paspalum vaginatum O. Swartz) use in beach landscaping. International Journal of Horticulture 4:64−71

[37]

Dudeck AE, Peacock CH. 1985. Effects of salinity on seashore Paspalum turfgrasses. Agronomy Journal 77:47−50

doi: 10.2134/agronj1985.00021962007700010012x
[38]

Lee G, Carrow RN, Duncan RR. 2005. Criteria for assessing salinity tolerance of the halophytic turfgrass seashore Paspalum. Crop Science 45:251−58

doi: 10.2135/cropsci2005.0251
[39]

Katuwal KB, Xiao B, Jespersen D. 2020. Physiological responses and tolerance mechanisms of seashore paspalum and centipedegrass exposed to osmotic and iso-osmotic salt stresses. Journal of Plant Physiology 248:153154

doi: 10.1016/j.jplph.2020.153154
[40]

Deinlein U, Stephan AB, Horie T, Luo W, Xu G, et al. 2014. Plant salt-tolerance mechanisms. Trends in Plant Science 19:371−79

doi: 10.1016/j.tplants.2014.02.001
[41]

Pan L, Hu X, Liao L, Xu T, Sun Q, et al. 2023. Lipid metabolism and antioxidant system contribute to salinity tolerance in halophytic grass seashore Paspalum in a tissue-specific manner. BMC Plant Biology 23:337

doi: 10.1186/s12870-023-04358-w
[42]

Sun G, Wase N, Shu S, Jenkins J, Zhou B, et al. 2022. Genome of Paspalum Vaginatum and the role of trehalose mediated autophagy in increasing maize biomass. Nature Communications 13:7731

doi: 10.1038/s41467-022-35507-8
[43]

Wu X, Shi H, Chen X, Liu Y, Guo Z. 2018. Establishment of Agrobacterium-mediated transformation of seashore Paspalum (Paspalum vaginatum o. Swartz). In Vitro Cellular & Developmental Biology - Plant 54:545−52

doi: 10.1007/s11627-018-9930-1
[44]

Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, et al. 2005. Solution structure of an Arabidopsis WRKY DNA binding domain. The Plant Cell 17:944−56

doi: 10.1105/tpc.104.026435
[45]

Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research 39:W29−W37

doi: 10.1093/nar/gkr367
[46]

Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. Trends in Plant Science 5:199−206

doi: 10.1016/S1360-1385(00)01600-9
[47]

Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings International Conference on Intelligent Systems for Molecular Biology 2:28−36

[48]

Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, et al. 2014. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Research 42:D231−D239

doi: 10.1093/nar/gkt1253
[49]

Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3:1101−08

doi: 10.1038/nprot.2008.73
[50]

Wu X, Shi H, Guo Z. 2018. Overexpression of a NF-YC gene results in enhanced drought and salt tolerance in transgenic seashore Paspalum. Frontiers in Plant Science 9:1355

doi: 10.3389/fpls.2018.01355
[51]

Huang X, Li K, Xu X, Yao Z, Jin C, et al. 2015. Genome-wide analysis of WRKY Transcription Factors in white Pear (Pyrus bretschneideri) Reveals Evolution and Patterns under Drought Stress. BMC Genomics 16:1104

doi: 10.1186/s12864-015-2233-6
[52]

Gupta S, Mishra VK, Kumari S, Raavi, Chand R, et al. 2019. Deciphering genome-wide WRKY gene family of Triticum Aestivum L. and their functional role in response to abiotic stress. Genes & Genomics 41:79−94

doi: 10.1007/s13258-018-0742-9
[53]

Du P, Wu Q, Liu Y, Cao X, Yi W, et al. 2022. WRKY transcription factor family in lettuce plant (Lactuca sativa): genome-wide characterization, chromosome location, phylogeny structures, and expression patterns. PeerJ 10:e14136

doi: 10.7717/peerj.14136
[54]

Li L, Mu S, Cheng Z, Cheng Y, Zhang Y, et al. 2017. Characterization and expression analysis of the WRKY gene family in moso bamboo. Scientific Reports 7:6675

doi: 10.1038/s41598-017-06701-2
[55]

Yu J, Zhang X, Cao J, Bai H, Wang R, et al. 2023. Genome-wide identification and characterization of WRKY transcription factors in Betula platyphylla Suk. and their responses to abiotic stresses. International Journal of Molecular Sciences 24:15000

doi: 10.3390/ijms241915000
[56]

Wu KL, Guo ZJ, Wang HH, Li J. 2005. The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Research 12:9−26

doi: 10.1093/dnares/12.1.9
[57]

Lu J, Wu T, Zhang B, Liu S, Song W, et al. 2021. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Communication and Signaling 19:60

doi: 10.1186/s12964-021-00741-y
[58]

Zhang M, Zhao R, Huang K, Huang S, Wang H, et al. 2022. The OsWRKY63–OsWRKY76–OsDREB1B module regulates chilling tolerance in rice. The Plant Journal 112:383−98

doi: 10.1111/tpj.15950
[59]

Gaestel M. 2006. MAPKAP kinases — MKs — Two's company, three's a crowd. Nature Reviews Molecular Cell Biology 7:120−30

doi: 10.1038/nrm1834
[60]

Roskoski R. 2012. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacological Research 66:105−43

doi: 10.1016/j.phrs.2012.04.005
[61]

Dröge-Laser W, Snoek BL, Snel B, Weiste C. 2018. The Arabidopsis bZIP transcription factor family—an update. Current Opinion in Plant Biology 45:36−49

doi: 10.1016/j.pbi.2018.05.001
[62]

Wang Z, Spoel SH. 2022. HECT ubiquitin ligases as accessory proteins of the plant proteasome. Essays in Biochemistry 66:135−45

doi: 10.1042/EBC20210064
[63]

Pedersen DS, Grasser KD. 2010. The role of Chromosomal HMGB proteins in plants. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1799:171−74

doi: 10.1016/j.bbagrm.2009.11.004
[64]

Bossi F, Cordoba E, Dupré P, Mendoza MS, Román CS, et al. 2009. The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling. The Plant Journal 59:359−74

doi: 10.1111/j.1365-313X.2009.03877.x
[65]

Jayakannan M, Bose J, Babourina O, Shabala S, Massart A, et al. 2015. The Npr1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis. Journal of Experimental Botany 66:1865−75

doi: 10.1093/jxb/eru528
[66]

Arisha MH, Aboelnasr H, Ahmad MQ, Liu Y, Tang W, et al. 2020. Transcriptome sequencing and whole genome expression profiling of hexaploid sweetpotato under salt stress. BMC Genomics 21:197

doi: 10.1186/s12864-020-6524-1
[67]

Saracco SA, Miller MJ, Kurepa J, Vierstra RD. 2007. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiology 145:119−34

doi: 10.1104/pp.107.102285
[68]

Sheikh AH, Eschen-Lippold L, Pecher P, Hoehenwarter W, Sinha AK, et al. 2016. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana. Frontiers in Plant Science 7:61

doi: 10.3389/fpls.2016.00061
[69]

Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, et al. 2012. WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnology Journal 10:2−11

doi: 10.1111/j.1467-7652.2011.00634.x
[70]

Khoso MA, Hussain A, Ritonga FN, Ali Q, Channa MM, et al. 2022. WRKY transcription factors (TFs): molecular switches to regulate drought, temperature, and salinity stresses in plants. Frontiers in Plant Science 13:1039329

doi: 10.3389/fpls.2022.1039329
[71]

Adachi H, Nakano T, Miyagawa N, Ishihama N, Yoshioka M, et al. 2015. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NAPH oxidase in Nicotiana benthamian. The Plant Cell 27:2645−63

doi: 10.1105/tpc.15.00213
[72]

Zhou X, Lei Z, An P. 2024. Post-translational modification of WRKY transcription factors. Plants 13:2040

doi: 10.3390/plants13152040